
The build2 Toolchain Introduction

Copyright © 2014-2018 Code Synthesis Ltd

Permission is granted to copy, distribute and/or modify this document under the terms of the MIT

License.

Revision 0.7, May 2018

This revision of the document describes the build2 toolchain 0.7.x series.

Table of Contents

................... 1Preface

................... 11 TL;DR

............... 22 Getting Started Guide

................ 22.1 Hello, World

.............. 102.2 Package Repositories

.......... 132.3 Adding and Removing Dependencies

......... 172.4 Upgrading and Downgrading Dependencies

.......... 192.5 Versioning and Release Management

......... 232.6 Developing Multiple Packages and Projects

.............. 272.7 Package Consumption

.......... 312.8 Using System-Installed Dependencies

........... 322.9 Using Unpackaged Dependencies

iRevision 0.7, May 2018 The build2 Toolchain Introduction

Table of Contents

Preface

This document is an overall introduction to the build2 toolchain that shows how the main

components, namely the build system, the package dependency manager, and the project depen­

dency manager are used together to handle the entire C++ project development lifecycle:

creation, development, testing, and delivery. For additional information, including documentation

for individual toolchain components, man pages, etc., refer to the build2 project Documenta­

tion page.

1 TL;DR
$ git clone ssh://example.org/hello.git

$ tree hello

hello/

âââ hello/

âÂ Â âââ hello.cxx

âÂ Â âââ buildfile

âââ manifest

âââ repositories.manifest

$ cd hello

$ bdep init --config-create ../hello-gcc cc config.cxx=g++

initializing in project /tmp/hello/

created configuration /tmp/hello-gcc/ default,auto-synchronized

synchronizing:

 new hello/0.1.0

$ b

c++ hello/cxx{hello}@../hello-gcc/hello/hello/

ld ../hello-gcc/hello/hello/exe{hello}

ln ../hello-gcc/hello/hello/exe{hello} -> hello/

$ hello/hello World

Hello, World!

$ edit repositories.manifest # add https://example.org/libhello.git

$ edit manifest # add ’depends: libhello ^1.0.0’

$ edit hello/buildfile # import libhello

$ edit hello/hello.cxx # use libhello

$ b

fetching from https://example.org/libhello.git

synchronizing /tmp/hello-gcc/:

 new libhello/1.0.0 (required by hello)

 reconfigure hello/0.1.0

c++ ../hello-gcc/libhello-1.0.0/libhello/cxx{hello}

ld ../hello-gcc/libhello-1.0.0/libhello/libs{hello}

c++ hello/cxx{hello}@../hello-gcc/hello/hello/

ld ../hello-gcc/hello/hello/exe{hello}

ln ../hello-gcc/hello/hello/exe{hello} -> hello/

$ bdep fetch # refresh available versions

1Revision 0.7, May 2018 The build2 Toolchain Introduction

Preface

https://build2.org/doc.xhtml
https://build2.org/doc.xhtml

$ bdep status -i # review available versions

hello configured 0.1.0

 libhello ^1.0.0 configured 1.0.0 available [1.1.0]

$ bdep sync libhello # upgrade to latest

synchronizing:

 new libformat/1.0.0 (required by libhello)

 new libprint/1.0.0 (required by libhello)

 upgrade libhello/1.1.0

 reconfigure hello/0.1.0

$ bdep sync libhello/1.0.0 # downgrade

synchronizing:

 drop libprint/1.0.0 (unused)

 drop libformat/1.0.0 (unused)

 downgrade libhello/1.0.0

 reconfigure hello/0.1.0

2 Getting Started Guide

The aim of this guide is to get you started developing C/C++ projects with the build2

toolchain. All the examples in this section include the relevant command output so if you just

want to get a sense of what build2 is about, then you don’t have to install the toolchain and run

the commands in order to follow along. Or, alternatively, you can take a short detour to the Instal­

lation Instructions and then try the examples for yourself.

One of the primary goals of the build2 toolchain is to provide a uniform interface across all the

platforms and compilers. While most of the examples in this document assume a UNIX-like oper­

ation system, they will look pretty similar if you are on Windows. You just have to use appropri­

ate paths, compilers, and options.

The question we will try to answer in this section can be summarized as:

$ git clone .../hello.git && now-what?

That is, we clone an existing C/C++ project or would like to create a new one and then start

hacking on it. We want to spend as little time and energy as possible on the initial and ongoing

infrastructure maintenance: setting up build configurations, managing dependencies, continuous

integration and testing, release management, etc. Or, as one C++ user aptly put it, "All I want to

do is program."

2.1 Hello, World

Let’s see what programming with build2 feels like by starting with a customary "Hello,

World!" program (here we assume our current working directory is /tmp):

Revision 0.7, May 20182 The build2 Toolchain Introduction

2 Getting Started Guide

https://build2.org/install.xhtml
https://build2.org/install.xhtml

$ bdep new -t exe -l c++ hello

created new executable project hello in /tmp/hello/

The bdep-new(1) command creates a canonical build2 project. In our case it is an

executable implemented in C++.

To create a library, pass -t lib. By default new also initializes a git repository and generates

suitable .gitignore files (pass -s none if you don’t want that). And for details on naming

your projects, see Package Name.

Note to Windows users: the build2-baseutils package includes core git utilities that are

sufficient for the bdep functionality.

Let’s take a look inside our new project:

$ tree hello

hello/

âââ .git/

âââ .bdep/

âââ build/

âââ hello/

âÂ Â âââ hello.cxx

âÂ Â âââ buildfile

âÂ Â âââ testscript

âââ buildfile

âââ manifest

âââ repositories.manifest

While the canonical project structure is strongly recommended, especially for new projects,

build2 is flexible enough to allow most commonly used arrangements.

Similar to version control tools, we normally run all build2 tools from the project’s source

directory or one of its subdirectories, so:

$ cd hello

While the project layout is discussed in more detail in later sections, let’s examine a couple of

interesting files to get a sense of what’s going on. We start with the source file which should look

familiar:

$ cat hello/hello.cxx

#include <iostream>

int main (int argc, char* argv[])

{

 using namespace std;

 if (argc < 2)

 {

 cerr << "error: missing name" << endl;

3Revision 0.7, May 2018 The build2 Toolchain Introduction

2.1 Hello, World

 return 1;

 }

 cout << "Hello, " << argv[1] << ’!’ << endl;

}

If you prefer the .?pp extensions over .?xx for your C++ source files, pass -l c++,cpp to

the new command. See bdep-new(1) for details on this and other customization options.

Let’s take a look at the accompanying buildfile:

$ cat hello/buildfile

libs =

#import libs += libhello%lib{hello}

exe{hello}: {hxx ixx txx cxx}{*} $libs testscript

As the name suggests, this file describes how to build things. While its content might look a bit

cryptic, let’s try to infer a couple of points without going into too much detail (the details are

discussed in the following sections). That exe{hello} on the left of : is a target (executable

named hello) and what we have on the right are prerequisites (C++ source files, libraries, etc).

This buildfile uses wildcard patterns (that *) to automatically locate all the C++ source files.

This means we don’t have to edit our buildfile every time we add a source file to our project.

There also appears to be some (commented out) infrastructure for importing and linking libraries

(that libs variable). We will see how to use it in a moment. Finally, the buildfile also lists

testscript as a prerequisite of hello. This file tests our target. Let’s take a look inside:

$ cat hello/testscript

: basics

:

$* ’World’ >’Hello, World!’

: missing-name

:

$* 2>>EOE != 0

error: missing name

EOE

Again, we are not going into detail here (see Testscript Introduction for a proper introduction),

but to give you an idea, here we have two tests: the first (with id basics) verifies that our

program prints the expected greeting while the second makes sure it handles the missing name

error condition. Tests written in Testscript are concise, portable, and executed in parallel.

Next up is manifest:

Revision 0.7, May 20184 The build2 Toolchain Introduction

2.1 Hello, World

$ cat manifest

: 1

name: hello

version: 0.1.0-a.0.z

summary: hello executable

license: TODO

url: https://example.org/hello

email: you@example.org

#depends: libhello ^1.0.0

The manifest file is what makes a build system project a package. It contains all the metadata

that a user of a package might need to know: its name, version, license, dependencies, etc., all in

one place.

Refer to Manifest Format for the general format of build2 manifest files and to Package Mani­

fest for details on the package manifest values.

As you can see, manifest created by bdep-new(1) contains some dummy values which you

would want to adjust before publishing your package. But let’s resist the urge to adjust that

strange looking 0.1.0-a.0.z until we discuss package versioning.

Next to manifest you might have noticed the repositories.manifest file – we will

discuss its function later, when we talk about dependencies and where they come from.

Project in hand, let’s build it. Unlike other programming languages, C++ development usually

involves juggling a handful of build configurations: several compilers and/or targets (build2 is

big on cross-compiling), debug/release, different sanitizers and/or static analysis tools, and so on.

As a result, build2 is optimized for multi-configuration usage. However, as we will see shortly,

one build configuration can be designated as the default with additional conveniences.

The bdep-init(1) command is used to initialize a project in a build configuration. As a

shortcut, it can also create a new build configuration in the process, which is just what we need

here. Let’s start with GCC (remember we are in the project’s root directory):

$ bdep init -C ../hello-gcc @gcc cc config.cxx=g++

initializing in project /tmp/hello/

created configuration @gcc /tmp/hello-gcc/ default,auto-synchronized

synchronizing:

 new hello/0.1.0-a.0.19700101000000

The --create|-C option instructs init to create a new configuration in the specified direc­

tory (../hello-gcc in our case). To make referring to configurations easier, we can give it a

name, which is what we do with @gcc. The next argument (cc, stands for C-common) is the

build system module we would like to configure. It implements compilation and linking rules for

the C and C++ languages. Finally, config.cxx=g++ is (one of) this module’s configuration

variables that specifies the C++ compiler we would like to use (the corresponding C compiler

will be determined automatically). Let’s for now also ignore that synchronizing:... bit

5Revision 0.7, May 2018 The build2 Toolchain Introduction

2.1 Hello, World

along with strange-looking 19700101000000 in the version – it will become clear what’s

going on here in a moment.

Note to Windows users: a command line argument with leading @ has a special meaning in

PowerShell. To work around this, you can use the alternative -@gcc syntax or the -n gcc

option.

Now the same for Clang:

$ bdep init -C ../hello-clang @clang cc config.cxx=clang++

initializing in project /tmp/hello/

created configuration @clang /tmp/hello-clang/ auto-synchronized

synchronizing:

 new hello/0.1.0-a.0.19700101000000

If we check the parent directory, we should now see two build configurations next to our project:

$ ls ..

hello/

hello-gcc/

hello-clang/

If, as in the above examples, our configuration directories are next to the project and their names

are in the prj-name-cfg-name form, then we can use the shortcut version of the init

command:

$ bdep init -C @clang cc config.cxx=clang++

Things will also look pretty similar if you are on Windows instead of a UNIX-like operating

system. For example, to initialize our project on Windows with Visual Studio, start the Visual

Studio development command prompt and then run:

Currently we have to run build2 tools from a suitable Visual Studio development command

prompt. This requirement will likely be removed in the future.

> bdep init -C ..\hello-debug @debug cc ^

 config.cxx=cl ^

 "config.cc.coptions=/MDd /Z7" ^

 config.cc.loptions=/DEBUG

> bdep init -C ..\hello-release @release cc ^

 config.cxx=cl ^

 config.cc.coptions=/O2

Besides the coptions (compile options) and loptions (link options), other commonly used

cc module configuration variables are poptions (preprocess options) and libs (extra

libraries to link). We can also use their config.c.* (C compilation) and config.cxx.*

(C++ compilation) variants if we only want them applied during the respective language compila­

tion. For example:

Revision 0.7, May 20186 The build2 Toolchain Introduction

2.1 Hello, World

$ bdep init ... cc \

 config.cxx=clang++ \

 config.cc.coptions=-g \

 config.cxx.coptions=-stdlib=libc++

One difference you might have noticed when creating the gcc and clang configurations above

is that the first one was designated as the default. The default configuration is used by bdep

commands if no configuration is specified explicitly (see bdep-projects-configs(1) for

details). It is also the configuration that is used if we run the build system in the project’s source

directory. So, normally, you would make your every day development configuration the default.

Let’s try that:

$ bdep status

hello configured 0.1.0-a.0.19700101000000

$ b

c++ hello/cxx{hello}@../hello-gcc/hello/hello/

ld ../hello-gcc/hello/hello/exe{hello}

ln ../hello-gcc/hello/hello/exe{hello} -> hello/

$ b test

test hello/test{testscript} ../hello-gcc/hello/hello/exe{hello}

$ hello/hello World

Hello, World!

To see the actual compilation command lines, run b -v and for even more details, run b -V.

See b(1) for more information on these and other build system options.

In contrast, the Clang configuration has to be requested explicitly:

$ bdep status @clang

hello configured 0.1.0-a.0.19700101000000

$ b ../hello-clang/hello/

c++ hello/cxx{hello}@../hello-clang/hello/hello/

ld ../hello-clang/hello/hello/exe{hello}

$ b test: ../hello-clang/hello/

test hello/test{testscript} ../hello-clang/hello/hello/exe{hello}

$../hello-clang/hello/hello/hello World

Hello, World!

As you can see, using the build system directly on configurations other than the default requires

explicitly specifying their paths. It would have been more convenient if we could refer to them by

names. The bdep-update(1) and bdep-test(1) commands allow us to do exactly that:

$ bdep test @clang

c++ hello/cxx{hello}@../hello-clang/hello/hello/

ld ../hello-clang/hello/hello/exe{hello}

test hello/test{testscript} ../hello-clang/hello/hello/exe{hello}

7Revision 0.7, May 2018 The build2 Toolchain Introduction

2.1 Hello, World

And we can also perform the desired build system operation on several (or --all|-a) configu­

rations at once:

$ bdep test @gcc @clang

in configuration @gcc:

test hello/test{testscript} ../hello-gcc/hello/hello/exe{hello}

in configuration @clang:

test hello/test{testscript} ../hello-clang/hello/hello/exe{hello}

As we will see later, the bdep-test(1) command also allows us to test immediate (--imme­

diate|-i) or all (--recursive|-r) dependencies of our project.

While we are here, let’s also check how hard it would be to cross-compile:

$ bdep init -C ../hello-mingw @mingw cc config.cxx=x86_64-w64-mingw32-g++

initializing in project /tmp/hello/

created configuration @mingw /tmp/hello-mingw/ auto-synchronized

synchronizing:

 new hello/0.1.0-a.0.19700101000000

$ bdep update @mingw

c++ hello/cxx{hello}@../hello-mingw/hello/hello/

ld ../hello-mingw/hello/hello/exe{hello}

As you can see, cross-compiling in build2 is nothing special. In our case, on a properly setup

GNU/Linux machine (that automatically uses wine as an .exe interpreter) we can even run

tests (in build2 this is called cross-testing):

$ bdep test @mingw

test hello/test{testscript} ../hello-mingw/hello/hello/exe{hello}

$../hello-mingw/hello/hello/hello.exe Windows

Hello, Windows!

Let’s review what it takes to initialize a project’s infrastructure and perform the first build. For an

existing project:

$ git clone .../hello.git

$ cd hello

$ bdep init -C ../hello-gcc @gcc cc config.cxx=g++

$ b

For a new project:

$ bdep new -t exe -l c++ hello

$ cd hello

$ bdep init -C ../hello-gcc @gcc cc config.cxx=g++

$ b

Revision 0.7, May 20188 The build2 Toolchain Introduction

2.1 Hello, World

If you prefer, the new and init steps can be combined into a single command:

$ bdep new -t exe -l c++ hello -C hello-gcc @gcc cc config.cxx=g++

And if you need to deinitialize a project in one or more build configurations, there is the

bdep-deinit(1) command for that:

$ bdep deinit @gcc @clang

deinitializing in project /tmp/hello/

in configuration @gcc:

synchronizing:

 drop hello

in configuration @clang:

synchronizing:

 drop hello

Now is also a good time to get an overview of the build2 toolchain. After all, we have already

used two of its tools (bdep and b) without a clear understanding of what they actually are.

Unlike most other programming languages that encapsulate the build system, package depen­

dency manager, and project dependency manager into a single tool (such as Rust’s cargo or

Go’s go), build2 is a hierarchy of several tools that you will be using directly and which

together with your version control system (VCS) will constitute the core of your project manage­

ment toolset.

While build2 can work without a VCS, this will result in reduced functionality.

At the bottom of the hierarchy is the build system, b(1). Next comes the package dependency

manager, bpkg(1). It is primarily used for package consumption and depends on the build

system. The top of the hierarchy is the project dependency manager, bdep(1). It is used for

project development and relies on bpkg for building project packages and their dependencies.

The main reason for this separation is modularity and the resulting flexibility: there are situations

where we only need the build system (for example, when building a package for a system

package manager where all the dependencies should be satisfied from the system repository), or

only the build system and package manager (for example, when a build bot is building a package

for testing).

Note also that strictly speaking build2 is not C/C++-specific; its build model is general enough

to handle any DAG-based operations and its package/project dependency management can be

used for any compiled language.

As we will see in a moment, build2 also integrates with your VCS in order to automate project

versioning. Note that currently only git(1) is supported.

9Revision 0.7, May 2018 The build2 Toolchain Introduction

2.1 Hello, World

Now that we understand the tooling, let’s also revisit the notion of build configuration (those

hello-gcc and hello-clang directories). A bdep build configuration is actually a bpkg

build configuration which, in the build system terms, is an amalgamation – a project that contains

subprojects. In our case, the subprojects in these amalgamations will be the projects we have

initialized with init and, as we will see later, packages that they depend on. For example, here

is what our hello-gcc contains:

$ tree hello-gcc

hello-gcc/

âââ .bpkg/

âââ build/

âÂ Â âââ config.build

âââ hello/

 âââ build/

 âÂ Â âââ config.build

 âââ hello/

 âââ hello

 âââ hello.o

Underneath bdep-init(1) with the --config-create|-C option calls

bpkg-cfg-create(1) which, in turn, performs the build system create meta-operation

(see b(1) for details).

The important point here is that the bdep build configuration is not a black box that you should

never look inside of. On the contrary, it is a normal and predictable concept of the package

manager and the build system and as long as you understand what you are doing, you should feel

free to interact with it directly.

Let’s now move on to the reason why there is dep in the bdep name: dependency management.

2.2 Package Repositories

Say we have realized that writing "Hello, World!" programs is a fairly common task and that

someone must have written a library to help with that. So let’s see if we can find something suit­

able to use in our project.

Where should we look? That’s a good question. But before we can try to answer it, we need to

understand where build2 can source dependencies. In build2 packages come from package

repositories. Two commonly used repository types are version control and archive-based (see

bpkg-repository-types(1) for details).

As the name suggests, a version control-based repository uses a VCS as its distribution mecha­

nism. Currently, only git is supported. Such a repository normally contains multiple versions of

a single package or, perhaps, of a few related packages.

Revision 0.7, May 201810 The build2 Toolchain Introduction

2.2 Package Repositories

An archive-based repository contains multiple, potentially unrelated packages/versions as

archives along with some meta information (package list, prerequisite/complement repositories,

signatures, etc) that are all accessible via HTTP(S).

Version control and archive-based repositories have different trade-offs. Version control-based

repositories are great for package developers: With services like GitHub they are trivial to setup.

In fact, your project’s (already existing) VCS repository will normally be the build2 package

repository – you might need to add a few files, but that’s about it.

However, version control-based repositories are not without drawbacks: It will be hard for your

users to discover your packages (try searching for "hello library" on GitHub – most of the results

are not even in C++ let alone packaged for build2). There is also the issue of continuous avail­

ability: users can delete their repositories, services may change their policies or go out of busi­

ness, and so on. Version control-based repositories also lack repository authentication and

package signing. Finally, obtaining the available package list for such repositories can be slow.

A central, archive-based repository would address all these drawbacks: It would be a single place

to search for packages. Published packages will never disappear and can be easily mirrored.

Packages are signed and the repository is authenticated (see bpkg-reposi­

tory-signing(1) for details). And, last, but not least, archive-based repositories are fast.

cppget.org is the build2 community’s central package repository. While centralized, it is also

easy to mirror since its contents are accessible via plain HTTPS (you can browse pkg.cppget.org

to get an idea). As an added benefit, packages on cppget.org are continuously built and tested on

all the major platform/compiler combinations with the results available as part of the package

description.

The main drawback of archive-based repositories is the setup cost. Getting a basic repository

going is relatively easy – all you need is an HTTP(S) server. Adding a repository web interface

like that on cppget.org will require running brep. And adding CI will require running a bunch of

build bots (bbot).

CI support for version control-based repositories is a work in progress.

To summarize, version control-based repositories are great for package developers while a

central, archive-based repository is convenient for package consumers. A reasonable strategy is

then for package developers to publish their releases to a central repository. Package consumers

can then decide which repository to use based on their needs. For example, one could use

cppget.org as a (fast, reliable, and secure) source of stable versions but also add, say, git reposi­

tories for select packages (perhaps with the #HEAD fragment filter to improve download speed)

for testing development snapshots. In this model the two repository types complement each other.

11Revision 0.7, May 2018 The build2 Toolchain Introduction

2.2 Package Repositories

https://cppget.org/
https://pkg.cppget.org/
https://cppget.org/
https://cppget.org/?builds
https://cppget.org/
https://cppget.org/brep
https://cppget.org/bbot
https://cppget.org/

Support for automated publishing of tagged releases to an archive-based repository is a work in

progress.

Let’s see how all this works in practice. Go over to cppget.org and type "hello library" in the

search box. At the top of the search result you should see the libhello package and if you

follow the link you will see the package description page along with a list of available versions.

Pick a version that you like and you will see the package version description page with quite a bit

of information, including the list of platform/compiler combinations that this version has been

successfully (or unsuccessfully) tested with. If you like what you see, copy the location value

– this is the repository location where this package version can be sourced from.

The cppget.org repository is split into several sections: stable, testing, beta, alpha and

legacy, with each section having its own repository location (see the repository’s about page

for details on each section’s policies). Note also that testing is complemented by stable,

beta by testing, and so on, so you only need to choose the lowest stability level and you will

automatically "see" packages from the more stable sections.

The cppget.org stable sections will always contain the libhello library version 1.0.X that

was generated using the following bdep-new(1) command line:

$ bdep new -t lib -l c++ libhello

It can be used as a predictable test dependency when setting up new projects.

Let’s say we’ve visited the libhello project’s home page (for example by following a link

from the package details page) and noticed that it is being developed in a git repository. How

can we see what’s available there? If the releases are tagged, then we can infer the available

released versions from the tags. But that doesn’t tell us anything about what’s happening on the

HEAD or in the branches. For that we can use the package manager’s bpkg-rep-info(1)

command:

$ bpkg rep-info https://git.build2.org/hello/libhello.git

libhello/1.0.0

libhello/1.1.0

As you can see, besides 1.0.0 that we have seen in cppget.org/stable, there is also

1.1.0 (which is perhaps being tested in cppget.org/testing). We can also check what

might be available on the HEAD (see bpkg-repository-types(1) for details on the git

repository URL format):

$ bpkg rep-info https://git.build2.org/hello/libhello.git#HEAD

libhello/1.1.1-a.0.20180504111511.2e82f7378519

Revision 0.7, May 201812 The build2 Toolchain Introduction

2.2 Package Repositories

https://cppget.org/
https://cppget.org/libhello
https://cppget.org/
https://cppget.org/?about
https://cppget.org/
https://git.build2.org/cgit/hello/libhello/

We can also use the rep-info command on archive-based repositories, however, if available,

the web interface is usually more convenient and provides more information.

To summarize, we found two repositories for the libhello package: the archive-based

cppget.org that contains the released versions as well as its development git repository where

we can get the bleeding edge stuff. Let’s now see how we can add libhello to our project.

2.3 Adding and Removing Dependencies

So we found libhello that we would like to use in our hello project. First, we edit the

repositories.manifest file found in the root directory of our project and add one of the

libhello repositories as a prerequisite. Let’s start with cppget.org:

role: prerequisite

location: https://pkg.cppget.org/1/stable

Refer to Repository Manifest for details on the repository manifest values.

Next, we edit the manifest file (again, found in the root of our project) and specify the depen­

dency on libhello with optional version constraint. For example:

depends: libhello ^1.0.0

Let’s briefly discuss version constraints (for details see the depends value documentation). A

version constraint can be expressed with a comparison operator (==, >, <, >=, <=), a range short­

cut operator (~ and ^), or a range. Here are a few examples:

depends: libhello == 1.2.3

depends: libhello >= 1.2.3

depends: libhello ~1.2.3

depends: libhello ^1.2.3

depends: libhello [1.2.3 1.2.9)

You may already be familiar with the tilde (~) and caret (^) constraints from dependency

managers for other languages. To recap, tilde allows upgrades to any further patch versions while

caret also allows upgrades to further minor versions. They are equivalent to the following ranges:

~X.Y.Z [X.Y.Z X.Y+1.0)

^X.Y.Z [X.Y.Z X+1.0.0) if X > 0

^0.Y.Z [0.Y.Z 0.Y+1.0) if X == 0

Zero major version component is customarily used during early development where the minor

version effectively becomes major. As a result, the tilde constraint has a special treatment of this

case.

13Revision 0.7, May 2018 The build2 Toolchain Introduction

2.3 Adding and Removing Dependencies

https://cppget.org/
https://cppget.org/

Unless you have good reasons not to (for example, a dependency does not use semantic version­

ing), we suggest that you use the ^ constraint which provides a good balance between compatibil­

ity and upgradability with ~ being a more conservative option.

Ok, we’ve specified where our package comes from (repositories.manifest) and which

versions we find acceptable (manifest). The next step is to edit hello/buildfile and

import the libhello library into our build:

import libs += libhello%lib{hello}

Finally, we modify our source code to use the library:

#include <libhello/hello.hxx>

...

int main (int argc, char* argv[])

{

 ...

 hello::say_hello (cout, argv[1]);

}

You are probably wondering why we have to specify this repeating information in so many

places. Let’s start with the source code: we can’t specify the version constraint or location there

because it will have to be repeated in every source file that uses the dependency.

Moving up, buildfile is also not a good place to specify this information for the same reason

(a library can be imported in multiple buildfiles) plus the build system doesn’t really know

anything about version constraints or repositories which is the purview of the dependency

management tools.

Finally, we have to separate the version constraint and the location because the same package can

be present in multiple repositories with different policies. For example, when a package from a

version control-based repository is published in an archive-based repository, its reposito­

ries.manifest file is ignored and all its dependencies should be available from the

archive-based repository itself (or its fixed set of prerequisite repositories). In other words,

manifest belongs to a package while repositories.manifest – to a repository.

Also note that this is unlikely to become burdensome since adding new dependencies is not some­

thing that happens often. There are also plans to automate this with a bdep-add(1) command

in the future.

To summarize, these are the files we had to modify to add a dependency to our project:

repositories.manifest # add https://pkg.cppget.org/1/stable

manifest # add ’depends: libhello ^1.0.0’

buildfile # import libhello

hello.cxx # use libhello

Revision 0.7, May 201814 The build2 Toolchain Introduction

2.3 Adding and Removing Dependencies

With a new dependency added, let’s check the status of our project:

$ bdep status

fetching pkg:cppget.org/stable (prerequisite of dir:/tmp/hello)

warning: authenticity of the certificate for pkg:cppget.org/stable

 cannot be established

certificate is for cppget.org, "Code Synthesis" <admin@cppget.org>

certificate SHA256 fingerprint:

86:BA:D4:DE:2C:87:1A:EE:38:<...>:5A:EA:F4:F7:8C:1D:63:30:C6

trust this certificate? [y/n] y

hello configured 0.1.0-a.0.19700101000000

 available 0.1.0-a.0.19700101000000#1

The bdep-status(1) command has detected that the dependency information has changed

and tells us that a new iteration of our project (that #1) is now available for synchronization with

the build configuration.

We’ve also been prompted to authenticate the prerequisite repository. This will have to happen

once for every build configuration we initialize our project in and can quickly become tedious. To

overcome this, we can mention the certificate fingerprint that we wish to automatically trust in

the repositories.manifest file (replace it with the actual fingerprint from the reposi­

tory’s about page):

role: prerequisite

location: https://pkg.cppget.org/1/stable

trust: 86:BA:D4:DE:2C:87:1A:EE:38:<...>:5A:EA:F4:F7:8C:1D:63:30:C6

To synchronize a project with one or more build configurations we use the bdep-sync(1)

command:

$ bdep sync

synchronizing:

 new libhello/1.0.0 (required by hello)

 upgrade hello/0.1.0-a.0.19700101000000#1

Or we could just build the project without an explicit sync – if necessary, it will be automati­

cally synchronized:

$ b

synchronizing:

 new libhello/1.0.0 (required by hello)

 upgrade hello/0.1.0-a.0.19700101000000#1

c++ ../hello-gcc/libhello-1.0.0/libhello/cxx{hello}

ld ../hello-gcc/libhello-1.0.0/libhello/libs{hello}

c++ hello/cxx{hello}@../hello-gcc/hello/hello/

ld ../hello-gcc/hello/hello/exe{hello}

ln ../hello-gcc/hello/hello/exe{hello} -> hello/

15Revision 0.7, May 2018 The build2 Toolchain Introduction

2.3 Adding and Removing Dependencies

The synchronization as performed by the sync command is two-way: dependency packages are

first added, removed, upgraded, or downgraded in build configurations according to the project’s

version constraints and user input. Then the actual versions of the dependencies present in the

build configurations are recorded in the project’s lockfile so that if desired, the build can be

reproduced exactly. The lockfile functionality is not yet implemented. For a new dependency

the latest available version that satisfies the version constraint is used.

Synchronization is also the last step in the bdep-init(1) command’s logic.

Let’s now examine the status in all (--all|-a) the build configurations and include the imme­

diate dependencies (--immediate|-i):

$ bdep status -ai

in configuration @gcc:

hello configured 0.1.0-a.0.19700101000000#1

 libhello ^1.0.0 configured 1.0.0

in configuration @clang:

hello configured 0.1.0-a.0.19700101000000

 available 0.1.0-a.0.19700101000000#1

Since we didn’t specify a configuration explicitly, only the default (gcc) was synchronized.

Normally, you would try a new dependency in one configuration, make sure everything looks

good, then synchronize the rest with --all|-a (or, again, just build what you need directly).

Here are a few examples (see bdep-projects-configs(1) for details):

$ bdep sync -a

$ bdep sync @gcc @clang

$ bdep sync -c ../hello-mingw

After adding a new (or upgrading/downgrading existing) dependency, it’s a good idea to

deep-test our project: run not only our own tests but also of its immediate (--immediate|-i)

or even all (--recursive|-r) dependencies. For example:

$ bdep test -ai

in configuration @gcc:

test hello/test{testscript} ../hello-gcc/hello/hello/exe{hello}

test ../hello-gcc/libhello-1.0.0/tests/basics/exe{driver}

in configuration @clang:

test hello/test{testscript} ../hello-clang/hello/hello/exe{hello}

test ../hello-clang/libhello-1.0.0/tests/basics/exe{driver}

To get rid of a dependency, we simply remove it from the manifest file and synchronize the

project. For example, assuming libhello is no longer mentioned as a dependency in our

manifests:

Revision 0.7, May 201816 The build2 Toolchain Introduction

2.3 Adding and Removing Dependencies

$ bdep status

hello configured 0.1.0-a.0.19700101000000#1

 available 0.1.0-a.0.19700101000000#2

$ bdep sync

synchronizing:

 drop libhello/1.0.0 (unused)

 upgrade hello/0.1.0-a.0.19700101000000#2

If instead of building a dependency from source you would prefer to use a version that is installed

by your system package manager, see Using System-Installed Dependencies. And for information

on using dependencies that are not build2 packages refer to Using Unpackaged Dependencies.

2.4 Upgrading and Downgrading Dependencies

Let’s say we would like to try that 1.1.0 version we have seen in the libhello git reposi­

tory. First, we need to add the repository to the repositories.manifest file:

role: prerequisite

location: https://git.build2.org/hello/libhello.git

Note that we don’t need the trust value since git repositories are not authenticated.

To refresh the list of available dependency versions we use the bdep-fetch(1) command (or

the --fetch|-f option to status):

$ bdep fetch

$ bdep status libhello

libhello configured 1.0.0 available [1.1.0]

To upgrade (or downgrade) dependencies we again use the bdep-sync(1) command. We can

upgrade one or more specific dependencies by listing them as arguments to sync:

$ bdep sync libhello

synchronizing:

 new libformat/1.0.0 (required by libhello)

 new libprint/1.0.0 (required by libhello)

 upgrade libhello/1.1.0

 upgrade hello/0.1.0-a.0.19700101000000#3

Without an explicit version or the --patch|-p option, sync will upgrade the specified depen­

dencies to the latest available versions. For example, if we don’t like version 1.1.0, we can

downgrade it back to 1.0.0 by specifying the version explicitly (we pass --old-avail­

able|-o to status to see the old versions):

17Revision 0.7, May 2018 The build2 Toolchain Introduction

2.4 Upgrading and Downgrading Dependencies

$ bdep status -o libhello

libhello configured 1.1.0 available (1.1.0) [1.0.0]

$ bdep sync libhello/1.0.0

synchronizing:

 drop libprint/1.0.0 (unused)

 drop libformat/1.0.0 (unused)

 downgrade libhello/1.0.0

 reconfigure hello/0.1.0-a.0.19700101000000#3

The available versions are listed in the descending order with [] indicating that the version is

only available as a dependency and () marking the current version.

Instead of specific dependencies we can also upgrade (--upgrade|-u) or patch

(--patch|-p) immediate (--immediate|-i) or all (--recursive|-r) dependencies of

our project.

As a more realistic example, version 1.1.0 of libhello depends on two other libraries:

libformat and libprint. Here is our project’s dependency tree while we were still using

that version:

$ bdep status -r

hello configured 0.1.0-a.0.19700101000000#3

 libhello ^1.0.0 configured 1.1.0

 libformat ^1.0.0 configured 1.0.0

 libprint ^1.0.0 configured 1.0.0

A typical conservative dependency management workflow would look like this:

$ bdep status -fi # refresh and examine immediate dependencies

hello configured 0.1.0-a.0.19700101000000#3

 libhello configured 1.1.0 available [2.0.0] [1.2.0] [1.1.2] [1.1.1]

$ bdep sync -pi # upgrade immediate to latest patch version

synchronizing:

 upgrade libhello/1.1.2

 reconfigure hello/0.1.0-a.0.19700101000000#3

continue? [Y/n] y

Notice that in case of such mass upgrades you are prompted for confirmation before anything is

actually changed (unless you pass --yes|-y).

In contrast, the following would be a fairly aggressive workflow where we upgrade everything to

the latest available version (version constraints permitting; here we assume ^1.0.0 was used for

all the dependencies):

$ bdep status -fr # refresh and examine all dependencies

hello configured 0.1.0-a.0.19700101000000#3

 libhello configured 1.1.0 available [2.0.0] [1.2.0] [1.1.1]

 libprint configured 1.0.0 available [2.0.0] [1.1.0] [1.0.1]

 libformat configured 1.0.0 available [2.0.0] [1.1.0] [1.0.1]

Revision 0.7, May 201818 The build2 Toolchain Introduction

2.4 Upgrading and Downgrading Dependencies

$ bdep sync -ur # upgrade all to latest available version

synchronizing:

 upgrade libprint/1.1.0

 upgrade libformat/1.1.0

 upgrade libhello/1.2.0

 reconfigure hello/0.1.0-a.0.19700101000000#3

continue? [Y/n] y

We can also have something in between: patch all (sync -pr), upgrade immediate

(sync -ui), or even upgrade immediate and patch the rest (sync -ui followed by

sync -pr).

2.5 Versioning and Release Management

Let’s now discuss versioning and release management and, yes, that strange-looking

0.1.0-a.0.19700101000000 we keep seeing. While a build system project doesn’t need a

version and a bpkg package can use custom versioning schemes (see Package Version), a project

managed by bdep must use standard versioning. A dependency, which is a bpkg package, need

not use standard versioning.

Standard versioning (stdver) is a semantic versioning (semver) scheme with a more precisely

defined pre-release component and without any build metadata.

If you believe that semver is just major.minor.patch, then in your worldview stdver would

be the same as semver. In reality, semver also allows loosely defined pre-release and build meta­

data components. For example, 1.2.3-beta.1+build.23456 is a valid semver.

A standard version has the following form:

major.minor.patch[-prerel]

The major, minor, and patch components have the same meaning as in semver. The

prerel component is used to provide continuous versioning of our project between releases.

Specifically, during development of a new version we may want to publish several pre-releases,

for example, alpha or beta. In between those we may also want to publish a number of snapshots,

for example, for CI. With continuous versioning all these releases, pre-releases, and snapshots are

assigned unique, properly ordered versions.

Continuous versioning is a cornerstone of the build2 project dependency management. In case

of snapshots, an appropriate version is assigned automatically in cooperation with your VCS.

The prerel component for a pre-release has the following form:

19Revision 0.7, May 2018 The build2 Toolchain Introduction

2.5 Versioning and Release Management

https://semver.org/

(a|b).num

Here a stands for alpha, b stands for beta, and num is the alpha/beta number. For example:

1.1.0 # final release for 1.1.0

1.2.0-a.1 # first alpha pre-release for 1.2.0

1.2.0-a.2 # second alpha pre-release for 1.2.0

1.2.0-b.1 # first beta pre-release for 1.2.0

1.2.0 # final release for 1.2.0

The prerel component for a snapshot has the following form:

(a|b).num.snapsn[.snapid]

Where snapsn is the snapshot sequence number and snapid is the snapshot id. In case of

git, snapsn is the commit timestamp in the YYYYMMDDhhmmss form and UTC timezone

while snapid is a 12-character abbreviated commit id. For example:

1.2.3-a.1.20180319215815.26efe301f4a7

Notice also that a snapshot version is ordered after the corresponding pre-release version. That is,

1.2.3-a.1 < 1.2.3-a.1.1. As a result, it is customary to start the development of a new

version with X.Y.Z-a.0.z, that is, a snapshot after the (non-existent) zero’th alpha release.

We will explain the meaning of z in this version momentarily. The following chronologi­

cally-ordered versions illustrate a typical release flow of a project that uses git as its VCS:

0.1.0-a.0.19700101000000 # snapshot (no commits yet)

0.1.0-a.0.20180319215815.26efe301f4a7 # snapshot (first commit)

... # more commits/snapshots

0.1.0-a.1 # pre-release (first alpha)

0.1.0-a.1.20180319221826.a6f0f41205b8 # snapshot

... # more commits/snapshots

0.1.0-a.2 # pre-release (second alpha)

0.1.0-a.2.20180319231937.b701052316c9 # snapshot

... # more commits/snapshots

0.1.0-b.1 # pre-release (first beta)

0.1.0-b.1.20180319242038.c812163417da # snapshot

... # more commits/snapshots

0.1.0 # release

0.2.0-a.0.20180319252139.d923274528eb # snapshot (first in 0.2.0)

...

For a more detailed discussion of standard versioning and its support in build2 refer to Version

Module.

Let’s now see how this works in practice by publishing a couple of versions for our hello

project. By now it should be clear what that 0.1.0-a.0.19700101000000 means – it is the

first snapshot version of our project. Since there are no commits yet, it has the UNIX epoch as its

commit timestamp. As the first step, let’s try to commit our project and see what changes:

Revision 0.7, May 201820 The build2 Toolchain Introduction

2.5 Versioning and Release Management

$ git add .

$ git commit -m "Start hello project"

$ bdep status

hello configured 0.1.0-a.0.19700101000000

 available 0.1.0-a.0.20180507062614.ee006880fc7e

Just like with changes to dependency information, status has detected that a new (snapshot)

version of our project is available for synchronization.

Another way to view the project’s version (which works even if we are not using bdep) is with

the build system’s info operation:

$ b info

project: hello

version: 0.1.0-a.0.20180507062614.ee006880fc7e

summary: hello executable project

...

Let’s synchronize with the default build configuration:

$ bdep sync

synchronizing:

 upgrade hello/0.1.0-a.0.20180507062614.ee006880fc7e

$ bdep status

hello configured 0.1.0-a.0.20180507062614.ee006880fc7e

Notice that we didn’t have to manually change the version anywhere. All we had to do was

commit our changes and a new snapshot version was automatically derived by build2 from the

new git commit. Without this automation continuous versioning would hardly be practical.

If we now make another commit, we will see a similar picture:

$ bdep status

hello configured 0.1.0-a.0.20180507062614.ee006880fc7e

 available 0.1.0-a.0.20180507062615.8fb9de05b38f

Note that you don’t need to manually run sync after every commit. As discussed earlier, you can

simply run the build system to update your project and things will get automatically synchronized

if necessary.

Ok, time for our first release. Let’s start with 0.1.0-a.1. Unlike snapshots, for pre-releases as

well as final releases we have to update the version in the manifest file manually:

version: 0.1.0-a.1

The manifest file is the singular place where we specify the package version. The build

system’s version module makes it available in various forms in buildfiles and even source

code.

21Revision 0.7, May 2018 The build2 Toolchain Introduction

2.5 Versioning and Release Management

To ensure continuous versioning, this change to version must be the last commit for this

(pre-)release which itself must be immediately followed by a second change to the version start­

ing the development of the next (pre-)release. We also recommend that you tag the release

commit with a tag name in the vX.Y.Z form.

Having regular release tag names with the v prefix allows one to distinguish them from other

tags, for example, with wildcard patterns.

Here is the release workflow for our example:

$ git commit -a -m "Release version 0.1.0-a.1"

$ git tag -a v0.1.0-a.1 -m "Tag version 0.1.0-a.1"

$ git push --follow-tags

Version 0.1.0-a.1 is now public.

$ edit manifest # change ’version: 0.1.0-a.1.z’

$ git commit -a -m "Change version to 0.1.0-a.1.z"

$ git push

Master is now open for business.

In the future release management will be automated with a bdep-release(1) command.

Notice also that when specifying a snapshot version in manifest we use the special z snapshot

value (for example, 0.1.0-a.1.z) which is recognized and automatically replaced by

build2 with, in case of git, a commit timestamp and id (refer to Version Module for details).

Publishing the final release is exactly the same. For completeness, here are the commands:

$ edit manifest # change ’version: 0.1.0’

$ git commit -a -m "Release version 0.1.0"

$ git tag -a v0.1.0 -m "Tag version 0.1.0"

$ git push --follow-tags

$ edit manifest # change ’version: 0.2.0-a.0.z’

$ git commit -a -m "Change version to 0.2.0-a.0.z"

$ git push

One sticky point of continuous versioning is choosing the next version. For example, above

should we continue with 0.1.1-a.0, 0.2.0-a.0, or 1.0.0-a.0? The important rule to

keep in mind is that we can jump forward to any further version at any time and without breaking

continuous versioning. But we can never jump backwards.

For example, we can start with 0.2.0-a.0 but if we later realize that this will actually be a new

major release, we can easily change it to 1.0.0-a.0. As a result, the general recommendation

is to start conservatively by either incrementing the patch or the minor version component. The

recommended strategy is to increment the minor component and, if required, release patch

versions from a separate branch (created by branching off from the release commit).

Revision 0.7, May 201822 The build2 Toolchain Introduction

2.5 Versioning and Release Management

Note also that you don’t have to make any pre-releases if you don’t need them. While during

development you would still keep the version as X.Y.Z-a.0, at release you simply change it

directly to the final X.Y.Z.

When publishing the final release you may also want to clean up now obsolete pre-release tags.

For example:

$ git tag -l ’v0.1.0-*’ | xargs git push --delete origin

$ git tag -l ’v0.1.0-*’ | xargs git tag --delete

While at first removing such tags may seem like a bad idea, pre-releases are by nature temporary

and their use only makes sense until the final release is published.

Also note that having a git repository with a large number of published but unused version tags

may result in a significant download overhead.

Let’s also briefly discuss in which situations we should increment each of the version compo­

nents. While semver gives basic guidelines, there are several ways to apply them in the context of

C/C++ where there is a distinction between binary and source compatibility. We recommend that

you reserve patch releases for specific bug fixes and security issues that you can guarantee with a

high level of certainty to be binary-compatible. Otherwise, if the changes are source-compatible,

increment minor. And if they are breaking (that is, the user code likely will need adjustments),

increment major. During early development, when breaking changes are frequent, it is customary

to use the 0.Y.Z versions where Y effectively becomes the major component. Again, refer to the

Version Module for a more detailed discussion of this topic.

2.6 Developing Multiple Packages and Projects

How does a library like libhello get developed? It’s possible someone woke up one day and

realized that they were going to build a useful library that everyone was going to use. But

somehow this doesn’t feel like how it really works. In the real world things start organically:

someone had a project like hello and then needed the same functionality in another project. Or

someone else needed it and asked the author to factor it out into a library. For this approach to

work, however, moving such common functionality into a library and then continue its parallel

development must be a simple, frictionless process. Let’s see how this works in build2.

First, we need to decide whether to make libhello another package in our hello project (that

is, in the same git repository) or a separate project (with a separate repository). Both arrange­

ments are equally well supported.

A multi-package project works best if all the packages have the same version and are released

together. While the packages themselves can have different versions (since each has its own

manifest), in this scenario following the release tagging recommendations discussed earlier

will be problematic.

23Revision 0.7, May 2018 The build2 Toolchain Introduction

2.6 Developing Multiple Packages and Projects

Let’s start with a separate project since it is simpler. As the first step we use bdep-new(1) to

create a new library project next to our hello:

$ bdep new -t lib -l c++ libhello

created new library project libhello in /tmp/libhello/

$ ls

hello/

libhello/

hello-gcc/

hello-clang/

Our two projects will be sharing the same set of build configurations, so next we initialize

libhello in hello-gcc and hello-clang:

$ cd libhello

$ bdep init -A ../hello-gcc @gcc

initializing in project /tmp/libhello/

added configuration @gcc /tmp/hello-gcc/ default,auto-synchronized

synchronizing:

 new libhello/0.1.0-a.0.19700101000000

$ bdep init -A ../hello-clang @clang

initializing in project /tmp/libhello/

added configuration @clang /tmp/hello-clang/ auto-synchronized

synchronizing:

 new libhello/0.1.0-a.0.19700101000000

If two or more projects share the same build configuration, then all of them are always synchro­

nized at once, regardless of the originating project. It also makes sense to have the same default

configuration and use identical configuration names in all the projects.

The last step is to move the desired functionality from hello to libhello and at the same add

a dependency on libhello, just as we did earlier (add a depends entry to manifest, then

import the library in buildfile, and so on). One interesting question is what to put as a

prerequisite repository in repositories.manifest. Our own setup will work even if we

don’t put anything there – the dependency will be automatically resolved to our local version of

libhello since we have initialized it in all our build configurations. However, in case our

hello repository is used by someone else, it’s a good idea to add the remote git repository for

libhello as a prerequisite.

By now you have probably realized that our project directory is just another type of package

repository. See bpkg-repository-types(1) for more information.

And that’s it, now we can build and test our new arrangement:

Revision 0.7, May 201824 The build2 Toolchain Introduction

2.6 Developing Multiple Packages and Projects

$ cd ../hello # back to hello project root

$ bdep test -i

c++ ../libhello/libhello/cxx{hello}

c++ ../libhello/tests/basics/cxx{driver}

c++ hello/cxx{hello}

ld ../hello-gcc/libhello/libhello/libs{hello}

ld ../hello-gcc/libhello/tests/basics/exe{driver}

ld ../hello-gcc/hello/hello/exe{hello}

test ../hello-gcc/libhello/tests/basics/exe{driver}

test hello/test{testscript} ../hello-gcc/hello/hello/exe{hello}

This is also the approach we would use if we wanted to fix a bug in someone else’s library. That

is, we would clone their project repository and initialize it in the build configurations of our

project which will "upgrade" the dependency to use the local version. Then we make the fix,

submit it upstream, and continue using the local version until our fix is merged/published, at

which point we deinitialize the project and switch back to using the upstream version.

Let’s now examine the second option: making libhello a package inside hello. Here is the

original structure of our hello project:

hello/

âââ .git/

âââ build/

âââ hello/

âÂ Â âââ hello.cxx

âÂ Â âââ buildfile

âââ buildfile

âââ manifest

âââ repositories.manifest

As the first step, we move the hello program into its own subdirectory:

hello/

âââ .git/

âââ hello/

âÂ Â âââ build/

âÂ Â âââ hello/

âÂ Â âÂ Â âââ hello.cxx

âÂ Â âÂ Â âââ buildfile

âÂ Â âââ buildfile

âÂ Â âââ manifest

âââ repositories.manifest

Next we again use bdep-new(1) to create a new library but this time as a package inside an

already existing project:

$ cd hello

$ bdep new --package -t lib -l c++ libhello

created new library package libhello in /tmp/hello/libhello/

25Revision 0.7, May 2018 The build2 Toolchain Introduction

2.6 Developing Multiple Packages and Projects

Let’s see what our project looks like now:

hello/

âââ .git/

âââ hello/

âÂ Â âââ ...

âÂ Â âââ manifest

âââ libhello/

âÂ Â âââ ...

âÂ Â âââ manifest

âââ packages.manifest

âââ repositories.manifest

Notice that, as discussed earlier, repositories.manifest belongs to the project (reposi­

tory) while manifest – to the package.

Besides the libhello directory the new command also created the packages.manifest

file in the root directory of our project. Let’s take a look inside:

$ cat packages.manifest

: 1

location: libhello/

Up until now our hello was a simple, single-package project that didn’t need this file – mani­

fest in its root directory was sufficient (see bpkg-repository-types(1) for details on

the project repository structure). But now it contains several packages and we need to specify

where they are located within the project. So let’s go ahead and add the location of the hello

package:

$ cat packages.manifest

: 1

location: libhello/

:

location: hello/

Packages in a project can reside next to each other or in subdirectories but they cannot nest.

When published to an archive-based repository, each such package will be placed into its own

archive.

Next we initialize the new package in all our build configurations:

$ cd libhello

$ bdep init -a

initializing in project /tmp/hello/

in configuration @gcc:

synchronizing:

 upgrade hello/0.1.0-a.0.19700101000000#1

 new libhello/0.1.0-a.0.19700101000000

Revision 0.7, May 201826 The build2 Toolchain Introduction

2.6 Developing Multiple Packages and Projects

in configuration @clang:

synchronizing:

 upgrade hello/0.1.0-a.0.19700101000000#1

 new libhello/0.1.0-a.0.19700101000000

Notice that the hello package has been "upgraded" to reflect its new location.

Finally, as before, we move the desired functionality from hello to libhello and at the same

time add a dependency on libhello. Note, however, that in this case we don’t need to add

anything to repositories.manifest since both packages are in the same project (reposi­

tory). And that’s it, now we can build and test our new arrangement:

$ cd .. # back to hello project root

$ bdep test

c++ libhello/libhello/cxx{hello}

c++ libhello/tests/basics/cxx{driver}

c++ hello/hello/cxx{hello}

ld ../hello-gcc/libhello/libhello/libs{hello}

ld ../hello-gcc/libhello/tests/basics/exe{driver}

ld ../hello-gcc/hello/hello/exe{hello}

test ../hello-gcc/libhello/tests/basics/exe{driver}

test hello/hello/test{testscript} ../hello-gcc/hello/hello/exe{hello}

2.7 Package Consumption

Ok, now that we have published a few releases of hello, how would the users of our project get

them? While they could clone the repository and use bdep just like we did, this is more of a

development rather than consumption workflow. For consumption it is much easier to use the

package dependency manager, bpkg(1), directly.

Note that this approach also works for libraries in case you wish to use them in a project with a

build system other than build2. See Using Unpackaged Dependencies for background on

cross-build system library consumption.

First, we create a suitable build configuration with the bpkg-cfg-create(1) command. We

can use the same place for building all our tools so let’s call the directory tools. Seeing that we

are only interested in using (rather than developing) such tools, let’s build them optimized and

also configure a suitable installation location:

$ bpkg create -d tools cc \

 config.cxx=g++ \

 config.cc.coptions=-O3 \

 config.install.root=/usr/local \

 config.install.sudo=sudo

created new configuration in /tmp/tools/

$ cd tools

27Revision 0.7, May 2018 The build2 Toolchain Introduction

2.7 Package Consumption

The same step on Windows using Visual Studio would look like this (again, remember to run this

from the Visual Studio development command prompt):

$ bpkg create -d tools cc ^

 config.cxx=cl ^

 config.cc.coptions=/O2 ^

 config.install.root= C:\install

To fetch and build packages (as well as all their dependencies) we use the

bpkg-pkg-build(1) command. We can use either an archive-based repository like

cppget.org or build directly from git:

$ bpkg build hello@https://git.build2.org/hello/hello.git

fetching from https://git.build2.org/hello/hello.git

 new libformat/1.0.0 (required by libhello)

 new libprint/1.0.0 (required by libhello)

 new libhello/1.1.0 (required by hello)

 new hello/1.0.0

continue? [Y/n] y

configured libformat/1.0.0

configured libprint/1.0.0

configured libhello/1.1.0

configured hello/1.0.0

c++ libprint-1.0.0/libprint/cxx{print}

c++ hello-1.0.0/hello/cxx{hello}

c++ libhello-1.1.0/libhello/cxx{hello}

c++ libformat-1.0.0/libformat/cxx{format}

ld libprint-1.0.0/libprint/libs{print}

ld libformat-1.0.0/libformat/libs{format}

ld libhello-1.1.0/libhello/libs{hello}

ld hello-1.0.0/hello/exe{hello}

updated hello/1.0.0

Passing a repository URL to the build command is a shortcut to the following sequence of

commands:

$ bpkg add https://git.build2.org/hello/hello.git # add repository

$ bpkg fetch # fetch package list

$ bpkg build hello # build package by name

Once built, we can install the package to the location that we have specified with

config.install.root using the bpkg-pkg-install(1) command:

$ bpkg install hello

...

install libformat-1.0.0/libformat/libs{format}

install libprint-1.0.0/libprint/libs{print}

install libhello-1.1.0/libhello/libs{hello}

install hello-1.0.0/hello/exe{hello}

$ hello World

Hello, World!

Revision 0.7, May 201828 The build2 Toolchain Introduction

2.7 Package Consumption

https://cppget.org/

If on your system the installed executables don’t run from /usr/local because of the unre­

solved shared libraries (or if you are installing somewhere else, such as /opt), then the easiest

way to fix this is with rpath. Simply add the following configuration variable when creating the

build configuration (or as an argument to the install command):

config.bin.rpath=/usr/local/lib

Note to Windows users: this is not an issue on this platform since executables and shared (DLL)

libraries are installed into the same subdirectory (bin) of the installation directory.

The installation contents and layout under config.install.root would be along these

lines:

/usr/local/

âââ bin/

âÂ Â âââ hello

âââ include/

âÂ Â âââ libformat/

âÂ Â âÂ Â âââ export.hxx

âÂ Â âÂ Â âââ format.hxx

âÂ Â âÂ Â âââ version.hxx

âÂ Â âââ libhello/

âÂ Â âÂ Â âââ export.hxx

âÂ Â âÂ Â âââ hello.hxx

âÂ Â âÂ Â âââ version.hxx

âÂ Â âââ libprint/

âÂ Â âââ export.hxx

âÂ Â âââ print.hxx

âÂ Â âââ version.hxx

âââ lib/

âÂ Â âââ libformat-1.0.so

âÂ Â âââ libformat.so -> libformat-1.0.so

âÂ Â âââ libhello-1.1.so

âÂ Â âââ libhello.so -> libhello-1.1.so

âÂ Â âââ libprint-1.0.so

âÂ Â âââ libprint.so -> libprint-1.0.so

âÂ Â âââ pkgconfig

âÂ Â âââ libformat.shared.pc

âÂ Â âââ libhello.shared.pc

âÂ Â âââ libprint.shared.pc

âââ share/

 âââ doc/

 âââ libformat/

 âÂ Â âââ manifest

 âââ libhello/

 âÂ Â âââ manifest

 âââ libprint/

 âââ manifest

The installation locations of various types of files (executables, libraries, headers, documentation,

etc.) can be customized using a number of the config.install.* variables with the most

commonly used ones and their defaults (relative to config.install.root) listed below (see

29Revision 0.7, May 2018 The build2 Toolchain Introduction

2.7 Package Consumption

the install build system module documentation for the complete list).

config.install.bin = root/bin/

config.install.lib = root/lib/

config.install.doc = root/share/doc/

config.install.man = root/share/man/

config.install.include = root/include/

If we need to uninstall a previously installed package, there is the bpkg-pkg-uninstall(1)

command:

$ bpkg uninstall hello

uninstall hello-1.0.0/hello/exe{hello}

uninstall libhello-1.1.0/libhello/libs{hello}

uninstall libprint-1.0.0/libprint/libs{print}

uninstall libformat-1.0.0/libformat/libs{format}

...

To upgrade or downgrade packages we again use the build command. Here is a typical upgrade

workflow:

$ bpkg fetch # refresh available package list

$ bpkg status # see if new versions are available

$ bpkg uninstall hello # uninstall old version

$ bpkg build hello # upgrade to the latest version

$ bpkg install hello # install new version

Similar to bdep, to downgrade we have to specify the desired version explicitly. There are also

the --upgrade|-u and --patch|-p as well as --immediate|-i and --recur­

sive|-r options that allow us to upgrade or patch packages that we have built and/or their

immediate or all dependencies (see bpkg-pkg-build(1) for details). For example, to make

sure everything is patched, run:

$ bpkg fetch

$ bpkg build -pr

If a package is no longer needed, we can remove it from the configuration with

bpkg-pkg-drop(1):

$ bpkg drop hello

following dependencies were automatically built but

will no longer be used:

 libhello

 libformat

 libprint

drop unused packages? [Y/n] y

 drop hello

 drop libhello

 drop libformat

 drop libprint

continue? [Y/n] y

Revision 0.7, May 201830 The build2 Toolchain Introduction

2.7 Package Consumption

purged hello

purged libhello

purged libformat

purged libprint

2.8 Using System-Installed Dependencies

Our operating system might already have a package manager (which we will refer to as system

package manager) and for various reasons we may want to use the system-installed version of a

dependency rather than building one from source.

Using system-installed versions works best for mature rather than rapidly-developed packages

since for the latter you often need to track the latest version (which may not yet be available from

the system repository) and/or test with multiple versions (which is not something that many

system package managers support).

We can instruct build2 to configure a dependency package as available from the system rather

than building it from source. Let’s see how this works in an example. Say, we want to use

libsqlite3 in our hello project.

The first step is to add it as a dependency, just like we did for libhello. That is, add another

depends entry to manifest, then import it in buildfile, and so on.

Note that the dependency still has to be packaged and available from one of the project’s prereq­

uisite repositories. However, it can be a stub – a package that does not contain any source code

and that can only be "obtained" from the system (see Package Version for details). See also Using

Unpackaged Dependencies for how to deal with dependencies that are not packaged.

Now, if we just run sync or try to build our project, build2 will download and build the new

dependency from source, just like it did for libhello. Instead, we can issue an explicit sync

command that configures the libsqlite3 package as coming from the system:

$ bdep sync ?sys:libsqlite3

synchronizing:

 configure sys:libsqlite3/*

 upgrade hello/0.1.0-a.0.19700101000000#3

Here ? is a package flag that instructs build2 to treat it as a dependency and sys is a package

scheme that tells build2 it comes from the system. See bpkg-pkg-build(1) for details.

We can have some build configurations using a system-installed version of a dependency while

others building it from source, for example, for testing.

The system-installed dependency doesn’t really have to come from the system package manager.

It can also be manually installed and, as discussed in Using Unpackaged Dependencies, not

necessarily into the system-default location like /usr/local.

31Revision 0.7, May 2018 The build2 Toolchain Introduction

2.8 Using System-Installed Dependencies

https://cppget.org/libsqlite3

Currently, unless we specify the installed version explicitly, a system-installed package is

assumed to satisfy any dependency constraint. In the future, build2 will automatically query

commonly used system package managers for the installed version and maybe even request

installation of the absent packages. To support this functionality, the package manifest may need

to specify package name mappings for various system package managers (which is the rationale

behind stub packages).

2.9 Using Unpackaged Dependencies

Generally, we will have a much better time if all our dependencies come as build2 packages.

Unfortunately, this won’t always be the case in the real world and some libraries that you may

need will use other build systems.

There is also the opposite problem: you may want to consume a library that uses build2 in a

project that uses a different build system. For that refer to Package Consumption.

The standard way to consume such unpackaged libraries is to install them (not necessarily into a

system-default location like /usr/local) so that we have a single directory with their headers

and a single directory with their libraries. We can then configure our builds to use these directo­

ries when searching for imported libraries.

Needless to say, none of the build2 dependency management mechanisms such as version

constraints or upgrade/downgrade will work on such unpackaged libraries. You will have to

manage all these yourself manually.

Let’s see how this all works in an example. Say, we want to use libextra that uses a different

build system in our hello project. The first step is to manually build and install this library for

each build configuration that we have. For example, we can install all such unpackaged libraries

into unpkg-gcc and unpkg-clang, next to our hello-gcc and hello-clang build

configurations:

$ ls

hello/

hello-gcc/

unpkg-gcc/

hello-clang/

unpkg-clang/

If you would like to try this out but don’t have a suitable libextra, you can create and install

one with these commands:

$ bdep new -t lib -l c++ libextra -C libextra-gcc cc config.cxx=g++

$ b install: libextra-gcc/ config.install.root=/tmp/unpkg-gcc

Revision 0.7, May 201832 The build2 Toolchain Introduction

2.9 Using Unpackaged Dependencies

If we look inside one of these unpkg-* directories, we should see something like this:

$ tree unpkg-gcc

unpkg-gcc

âââ include

âÂ Â âââ libextra

âÂ Â âââ extra.hxx

âââ lib

 âââ libextra.a

 âââ libextra.so

 âââ pkgconfig

 âââ libextra.pc

Notice that libextra.pc – it’s a pkg-config(1) file that contains any extra compile and

link options that may be necessary to consume this library. This is the de facto standard for build

systems to communicate library build information to each other and is today supported by most

commonly used implementations. Speaking of build2, it both recognizes .pc files when

consuming third-party libraries and automatically produces them when installing its own.

While this may all seem foreign to Windows users, there is nothing platform-specific about this

approach, including support for pkg-config, which, at least in case of build2, works equally

well on Windows.

Next, we create a build configuration and configure it to use one of these unpkg-* directories

(replace ... with the absolute path):

$ bdep init -C ../hello-gcc @gcc cc config.cxx=g++ \

 config.cc.poptions=-I.../unpkg-gcc/include \

 config.cc.loptions=-L.../unpkg-gcc/lib

If using Visual Studio, replace -I with /I and -L with /LIBPATH:.

Alternatively, if you want to reconfigure one of the existing build configurations, then simply edit

the build/config.build file (that is, hello-gcc/build/config.build in our case)

and adjust the poptions and loptions values. Or you can use the build system directly to

reconfigure the build configuration (see b(1) for details):

b configure: ../hello-gcc/ \

 config.cc.poptions+=-I.../unpkg-gcc/include \

 config.cc.loptions+=-L.../unpkg-gcc/lib

If all the unpackaged libraries included .pc files, then the -L alone would have been sufficient.

However, it doesn’t hurt to also add -I, for good measure.

Once this is done, adjust your buildfile to import the library:

33Revision 0.7, May 2018 The build2 Toolchain Introduction

2.9 Using Unpackaged Dependencies

import libs += libextra%lib{extra}

And your source code to use it:

#include <libextra/extra.hxx>

Notice that we don’t add the corresponding depends value to the project’s manifest since

this library is not a package. However, it is a good idea to instead add a requires entry as a

documentation to users of our project.

Revision 0.7, May 201834 The build2 Toolchain Introduction

2.9 Using Unpackaged Dependencies

	Preface
	1 TL;DR
	2 Getting Started Guide
	2.1 Hello, World
	2.2 Package Repositories
	2.3 Adding and Removing Dependencies
	2.4 Upgrading and Downgrading Dependencies
	2.5 Versioning and Release Management
	2.6 Developing Multiple Packages and Projects
	2.7 Package Consumption
	2.8 Using System-Installed Dependencies
	2.9 Using Unpackaged Dependencies

