
The build2 Package Manager

Copyright © 2014-2024 the build2 authors.

Permission is granted to copy, distribute and/or modify this document under the terms of the

MIT License.

Revision 0.17, April 2024

This revision of the document describes the build2 package manager 0.17.x series.

Table of Contents

.................. 1Preface

................ 11 Package Name

................ 12 Package Version

............. 43 Package Version Constraint

............ 64 Package Build System Skeleton

........... 85 Dependency Configuration Negotiation

............ 115.1 Prefer X but Accept X or Y

............... 115.2 Use If Enabled

........... 125.3 Disable If Enabled by Default

................. 126 Manifests

.............. 126.1 Manifest Format

.............. 166.2 Package Manifest

............... 186.2.1 name

.............. 186.2.2 version

............ 186.2.3 type, language

.............. 196.2.4 project

.............. 196.2.5 priority

.............. 196.2.6 summary

.............. 206.2.7 license

.............. 226.2.8 topics

.............. 226.2.9 keywords

...... 226.2.10 description, package-description

.............. 236.2.11 changes

............... 246.2.12 url

.............. 246.2.13 doc-url

.............. 246.2.14 src-url

............ 246.2.15 package-url

.............. 246.2.16 email

............ 246.2.17 package-email

............ 246.2.18 build-email

.......... 256.2.19 build-warning-email

.......... 256.2.20 build-error-email

.............. 256.2.21 depends

............. 326.2.22 requires

........ 336.2.23 tests, examples, benchmarks

.............. 356.2.24 builds

........ 366.2.25 build-{include, exclude}

........... 376.2.26 build-auxiliary

............. 386.2.27 build-bot

........... 396.2.28 *-build-config

............. 426.2.29 build-file

... 436.2.30 *-{name, version, to-downstream-version}

........ 446.3 Package List Manifest for pkg Repositories

.......... 446.3.1 sha256sum (list manifest)

iRevision 0.17, April 2024 The build2 Package Manager

Table of Contents

.......... 456.3.2 location (package manifest)

.......... 456.3.3 sha256sum (package manifest)

......... 456.4 Package List Manifest for dir Repositories

............... 456.4.1 location

............... 466.4.2 fragment

............... 466.5 Repository Manifest

............... 466.5.1 location

................ 476.5.2 type

................ 476.5.3 role

................ 476.5.4 trust

................. 476.5.5 url

................ 486.5.6 email

............... 486.5.7 summary

.............. 486.5.8 description

.............. 496.5.9 certificate

............... 496.5.10 fragment

.............. 496.6 Repository List Manifest

............ 506.6.1 min-bpkg-version

.............. 506.6.2 compression

.......... 506.7 Signature Manifest for pkg Repositories

............... 516.7.1 sha256sum

............... 516.7.2 signature

............ 517 Binary Distribution Package Mapping

............. 517.1 Debian Package Mapping

........ 517.1.1 Debian Package Mapping for Consumption

........ 527.1.2 Debian Package Mapping for Production

............. 557.2 Fedora Package Mapping

........ 557.2.1 Fedora Package Mapping for Consumption

........ 577.2.2 Fedora Package Mapping for Production

Revision 0.17, April 2024ii The build2 Package Manager

Table of Contents

Preface

This document describes bpkg, the build2 package dependency manager. For the package

manager command line interface refer to the bpkg(1) man pages.

1 Package Name

The bpkg package name can contain ASCII alphabetic characters ([a-zA-Z]), digits

([0-9]), underscores (_), plus/minus (+-), and dots/periods (.). The name must be at least

two characters long with the following additional restrictions:

1. It must start with an alphabetic character.

2. It must end with an alphabetic, digit, or plus character.

3. It must not be any of the following illegal names:

build
con prn aux nul
com1 com2 com3 com4 com5 com6 com7 com8 com9
lpt1 lpt2 lpt3 lpt4 lpt5 lpt6 lpt7 lpt8 lpt9

The use of the plus (+) character in package names is discouraged. Pluses are used in URL

encoding which makes specifying packages that contain pluses in URLs cumbersome.

The use of the dot (.) character in package names is discouraged except for distinguishing the

implementations of the same functionality for different languages. For example, libfoo and

libfoo.bash.

Package name comparison is case-insensitive but the original case must be preserved for

display, in file names, etc. The reason for case-insensitive comparison is Windows file names.

If the package is a library then it is strongly recommended that you start its package name

with the lib prefix, for example, libfoo. Some package repositories may make this a

requirement as part of their submission policy.

If a package (normally a library) supports usage of multiple major versions in the same

project, then it is recommended to append the major version number to the package name

starting from version 2.0.0, for example, libfoo (before 2.0.0), libfoo2 (2.Y.Z),

libfoo3 (3.Y.Z), etc.

2 Package Version

The bpkg package version format tries to balance the need of accommodating existing soft

ware versions on one hand and providing a reasonably straightforward comparison semantics

on another. For some background on this problem see deb-version(1) and the Semantic

Versioning specification.

1Revision 0.17, April 2024 The build2 Package Manager

Preface

http://semver.org/
http://semver.org/

Note also that if you are starting a new project that will use the build2 toolchain, then it is

strongly recommended that you use the standard versioning scheme which is a more strictly

defined subset of semantic versioning that allows automation of many version management

tasks. See version Module for details.

The bpkg package version has the following form:

[+<epoch>-]<upstream>[-<prerel>][+<revision>][#<iteration>]

The epoch part should be an integer. It can be used to change to a new versioning scheme that

would be incompatible with the old one. If not specified, then epoch defaults to 1 except for a

stub version (see below) in which case it defaults to 0. The explicit zero epoch can be used if

the current versioning scheme (for example, date-based) is known to be temporary.

The upstream part is the upstream software version that this package is based on. It can only

contain alpha-numeric characters and .. The . character is used to separate the version into

components.

The prerel part is the upstream software pre-release marker, for example, alpha, beta, candi

date, etc. Its format is the same as for upstream except for two special values: the absent

prerel (for example, 1.2.3) signifies the maximum or final release while the empty prerel

(for example, 1.2.3-) signifies the minimum or earliest possible release. The minimum

release is intended to be used for version constraints (for example, libfoo < 1.2.3-)

rather than actual releases.

The revision part should be an integer. It is used to version package releases that are based on

the same upstream versions. If not specified, then revision defaults to 0.

The iteration part is an integer. It is used internally by bpkg to automatically version modifi

cations to the packaging information (specifically, to package manifest and lockfile) in exter

nal packages that have the same upstream version and revision. As a result, the iteration

cannot not be specified by the user and is only shown in the bpkg output (for example, by

pkg-status command) in order to distinguish between package iterations with otherwise

identical versions. Note also that iteration is relative to the bpkg configuration. Or, in other

words, it is an iteration number of a package as observed by a specific configuration. As a

result, two configurations can "see" the same package state as two different iterations.

Package iterations are used to support package development during which requiring the devel

oper to manually increment the version or revision after each modification would be impracti

cal. This mechanism is similar to the automatic commit versioning provided by the standard

version except that it is limited to the packaging information but works for uncommitted

changes.

Version +0-0- (least possible version) is reserved and specifying it explicitly is illegal.

Explicitly specifying this version does not make much sense since libfoo < +0-0- is

always false and libfoo > +0-0- is always true. In the implementation this value is used

as a special empty version.

Revision 0.17, April 20242 The build2 Package Manager

2 Package Version

Version 0 (with a potential revision, for example, 0+1, 0+2) is used to signify a stub

package. A stub is a package that does not contain source code and can only be "obtained"

from other sources, for example, a system package manager. Note that at some point a stub

may be converted into a full-fledged package at which point it will be assigned a "real"

version. It is assumed that this version will always be greater than the stub version.

When displaying the package version or when using the version to derive the file name, the

default epoch value as well as zero revision and iteration values are omitted (even if they

were explicitly specified, for instance, in the package manifest). For example, +1-1.2.3+0
will be used as libfoo-1.2.3.

This versioning scheme and the choice of delimiter characters (.-+) is meant to align with

semantic versioning.

Some examples of versions:

0+1
+0-20180112
1.2.3
1.2.3-a1
1.2.3-b2
1.2.3-rc1
1.2.3-alpha1
1.2.3-alpha.1
1.2.3-beta.1
1.2.3+1
+2-1.2.3
+2-1.2.3-alpha.1+3
+2.2.3#1
1.2.3+1#1
+2-1.2.3+1#2

The version sorting order is epoch, upstream, prerel, revision, and finally, iteration. The

upstream and prerel parts are compared from left to right, one component at a time, as

described next.

To compare two components, first the component types are determined. A component that

only consists of digits is an integer. Otherwise, it is a string. If both components are integers,

then they are compared as integers. Otherwise, they are compared lexicographically and

case-insensitively. The reason for case-insensitive comparison is Windows file names.

A non-existent component is considered 0 if the other component is an integer and an empty

string if the other component is a string. For example, in 1.2 vs 1.2.0, the third component

in the first version is 0 and the two versions are therefore equal. As a special exception to this

rule, an absent prerel part is always greater than any non-absent part. And thus making the

final release always older than any pre-release.

This algorithm gives correct results for most commonly-used versioning schemes, for

example:

3Revision 0.17, April 2024 The build2 Package Manager

2 Package Version

1.2.3 < 12.2
1.alpha < 1.beta
20151128 < 20151228
2015.11.28 < 2015.12.28

One notable versioning scheme where this approach gives an incorrect result is hex numbers

(consider A vs 1A). The simplest work around is to convert such numbers to decimal. Alterna

tively, one can fix the width of the hex number and pad all the values with leading zeros, for

example: 00A vs 01A.

It is also possible to convert the upstream and prerel parts into a canonical representation that

will produce the correct comparison result when always compared lexicographically and as a

whole. This can be useful, for example, when storing versions in the database which would

otherwise require a custom collation implementation to obtain the correct sort order.

To convert one of these parts to its canonical representation, all its string components are

converted to the lower case while all its integer components are padded with leading zeros to

the fixed length of 16 characters, with all trailing zero-only components removed. Note that

this places an implementation limit on the length of integer components which should be

checked by the implementation when converting to the canonical representation. The 16 char

acters limit was chosen to still be able to represent (with some spare) components in the

YYYYMMDDhhmmss form while not (visually) bloating the database too much. As a special

case, the absent prerel part is represented as ~. Since the ASCII code for ~ is greater than any

other character that could appear in prerel, such a string will always be greater than any other

representation. The empty prerel part is represented as an empty string.

Note that because it is not possible to perform a reverse conversion without the possibility of

loss (consider 01.AA.BB), the original parts may also have to be stored, for example, for

display, to derive package archive names, etc.

In quite a few contexts the implementation needs to ignore the revision and/or iteration parts.

For example, this is needed to implement the semantics of newer revisions/iterations of pack

ages replacing their old ones since we do not keep multiple revisions/iterations of the same

upstream version in the same repository. As a result, in the package object model, we have a

version key as just {epoch, upstream, prerel} but also store the package revision and iteration

so that it can be shown to the user, etc.

3 Package Version Constraint

The bpkg package version constraint may follow the package name in certain contexts, such

as the manifest values and bpkg command line, to restrict the allowed package version set. It

can be specified using comparison operators, shortcut (to range) operators, or ranges and has

the following form:

<version-constraint> = <comparison> | <shortcut> | <range>
<comparison> = (’==’ | ’>’ | ’<’ | ’>=’ | ’<=’) <version>
<shortcut> = (’^’ | ’~’) <version>
<range> = (’(’ | ’[’) <version> <version> (’)’ | ’]’)

Revision 0.17, April 20244 The build2 Package Manager

3 Package Version Constraint

The shortcut operators can only be used with standard versions (a semantic version without

the pre-release part is a standard version). They are equivalent to the following ranges. The

X.Y.Z- version signifies the earliest pre-release in the X.Y.Z series; see Package Version

for details.

~X.Y.Z [X.Y.Z X.Y+1.0-)

^X.Y.Z [X.Y.Z X+1.0.0-) if X > 0
^0.Y.Z [0.Y.Z 0.Y+1.0-) if X == 0

That is, the tilde (~) constraint allows upgrades to any further patch version while the caret

(^) constraint – also to any further minor version.

Zero major version component is customarily used during early development where the minor

version effectively becomes major. As a result, the tilde constraint has special semantics for

this case.

Note that the shortuct operators can only be used with the complete, three-component versions

(X.Y.Z with the optional pre-release part per the standard version). Specifically, there is no

support for special ^X.Y or ~X semantics offered by some package manager – if desired,

such functionality can be easily achieved with ranges. Also, the 0.0.Z version is not consid

ered special except as having zero major component for the tilde semantics discussed above.

Note also that pre-releases do not require any special considerations when used with the short

cut operators. For example, if package libfoo is usable starting with the second beta of the

2.0.0 release, then our constraint could be expressed as:

libfoo ^2.0.0-b.2

Internally, shortcuts and comparisons can be represented as ranges (that is, [v, v] for ==,

(v, inf) for >, etc). However, for display and serialization such representations should be

converted back to simple operators. While it is possible that the original manifest specified

equality or shortucts as full ranges, it is acceptable to display/serialize them as simpler opera

tors.

Instead of a concrete value, the version in the constraint can be specified in terms of the

dependent package’s version (that is, the version of the package placing the constraint) using

the special $ value. For example:

libfoo == $

A constraint that contains $ is called incomplete. This mechanism is primarily useful when

developing related packages that should track each other’s versions exactly or closely.

In comparison operators and ranges the $ value is replaced with the dependent version ignor

ing the revision. For shortcut operators, the dependent version must be a standard version and

the following additional processing is applied depending on whether the version is a release,

final pre-release, or a snapshot pre-release.

5Revision 0.17, April 2024 The build2 Package Manager

3 Package Version Constraint

1. For a release we set the min version patch to zero. For ^ we also set the minor version to

zero, unless the major version is zero (reduces to ~). The max version is set according to

the standard shortcut logic. For example, ~$ is completed as follows:

1.2.0 -> [1.2.0 1.3.0-)
1.2.1 -> [1.2.0 1.3.0-)
1.2.2 -> [1.2.0 1.3.0-)

And ^$ is completed as follows:

1.0.0 -> [1.0.0 2.0.0-)
1.1.1 -> [1.0.0 2.0.0-)

2. For a final pre-release the key observation is that if the patch component for ~ or minor

and patch components for ^ are not zero, then that means there has been a compatible

release and we treat this case the same as release, ignoring the pre-release part. If,

however, it/they are zero, then that means there may yet be no final release and we have

to start from the first alpha. For example, for the ~$ case:

1.2.0-a.1 -> [1.2.0-a.1 1.3.0-)
1.2.0-b.2 -> [1.2.0-a.1 1.3.0-)
1.2.1-a.1 -> [1.2.0 1.3.0-)
1.2.2-b.2 -> [1.2.0 1.3.0-)

And for the ^$ case:

1.0.0-a.1 -> [1.0.0-a.1 2.0.0-)
1.0.0-b.2 -> [1.0.0-a.1 2.0.0-)
1.0.1-a.1 -> [1.0.0 2.0.0-)
1.1.0-b.2 -> [1.0.0 2.0.0-)

3. For a snapshot pre-release we distinguish two cases: a patch snapshot (the patch compo

nent is not zero) and a major/minor snapshot (the patch component is zero). For the patch

snapshot case we assume that it is (most likely) developed independently of the depen

dency and we treat it the same as the final pre-release case. For example, if the dependent

version is 1.2.1-a.0.nnn, the dependency could be 1.2.0 or 1.2.2 (or some

where in-between).

For the major/minor snapshot we assume that all the packages are developed in the lock

step and have the same X.Y.0 version. In this case we make the range start from the

earliest possible version in this "snapshot series" and end before the final pre-release. For

example (in this case ~ and ^ are treated the same):

1.2.0-a.0.nnn -> [1.2.0-a.0.1 1.2.0-a.1)
2.0.0-b.2.nnn -> [2.0.0-b.2.1 2.0.0-b.3)

4 Package Build System Skeleton

There are situations where bpkg may need to evaluate buildfile expressions and frag

ments before committing to a particular version of the package and therefore before actually

unpacking anything. For example, bpkg may need to evaluate a condition in the conditional

dependency or it may need to negotiate a configuration among several dependents of a

Revision 0.17, April 20246 The build2 Package Manager

4 Package Build System Skeleton

package which requires it to know this package’s configuration variable types and default

values.

To solve this chicken and egg kind of problem, bpkg includes a minimal subset of the build

system files along with the package’s standard metadata (name, version, etc) into the reposi

tory metadata (packages.manifest). This subset is called the package build system

skeleton, or just package skeleton for short, and includes the build/bootstrap.build
and build/root.build files (or their alternative naming scheme variants) as well as any

files that may be sourced by root.build.

The inclusion of build/bootstrap.build and build/root.build (if present) as

well as any build/config/*.build (or their alternative naming scheme variants) is

automatic. However, if root.build sources any files other than

build/config/*.build, then they must be specified explicitly in the package manifest

using the build-file value.

Inside these buildfiles the skeleton load can be distinguished from normal load by examining

the build.mode variable, which is set to skeleton during the skeleton load. In particular,

this variable must be used to omit loading of build system modules that are neither built-in nor

standard pre-installed and which are therefore listed as package dependencies. Such modules

are not yet available during the skeleton load. For example:

root.build

using cxx # Ok, built-in module.
using autoconf # Ok, standard pre-installed module.

if ($build.mode != ’skeleton’)
 using hello

The build.mode variable can also be used to omit parts of root.build that are expen

sive to evaluate and which are only necessary during the actual build. Here is a realistic

example:

root.build

...

using cxx

Determine the GCC plugin directory. But omit doing it during the
skeleton load.
#
if ($build.mode != ’skeleton’)
{
 if ($cxx.id != ’gcc’)
 fail ’this project can only be built with GCC’

 # If plugin support is disabled, then -print-file-name will print
 # the name we have passed (the real plugin directory will always
 # be absolute).
 #
 plugin_dir = [dir_path] \
 $process.run($cxx.path -print-file-name=plugin)

7Revision 0.17, April 2024 The build2 Package Manager

4 Package Build System Skeleton

 if ("$plugin_dir" == plugin)
 fail "$recall($cxx.path) does not support plugins"

 plugin_dir = $normalize($plugin_dir)
}

5 Dependency Configuration Negotiation

In bpkg, a dependent package may specify a desired configuration for a dependency package.

Because there could be multiple such dependents, bpkg needs to come up with a dependency

configuration that is acceptable to all of them. This process is called the dependency configu

ration negotiation.

The desired dependency configuration is specified as part of the depends manifest value and

can be expressed as either a single require clause or as a pair of prefer/accept clauses.

The require clause is essentially a shortcut for specifying the prefer/accept clauses

where the accept condition simply verifies all the variable values assigned in the prefer
clause. It is, however, further restricted to the common case of only setting bool variables

and only to true to allow additional optimizations during the configuration negotiation. The

remainder of this section only deals with the general prefer/accept semantics.

While the exact format of prefer/accept is described as part of the depends manifest

value, for this section it is sufficient to know that the prefer clause is an arbitrary build
file fragment that is expected to set one or more dependency configuration variables to the

values preferred by this dependent while the accept clause is a buildfile eval context

expression that should evaluate to true or false indicating whether the dependency

configuration values it is evaluated on are acceptable to this dependent. For example:

libfoo ^1.0.0
{
 # We prefer the cache but can work without it.
 # We need the buffer of at least 4KB.
 #
 prefer
 {
 config.libfoo.cache = true

 config.libfoo.buffer = ($config.libfoo.buffer < 4096 \
 ? 4096 \
 : $config.libfoo.buffer)
 }

 accept ($config.libfoo.buffer >= 4096)
}

The configuration negotiation algorithm can be summarized as cooperative refinement.

Specifically, whenever a prefer clause of a dependent changes any configuration value, all

other dependents’ prefer clauses are re-evaluated. This process continues until there are no

more changes (success), one of the accept clauses returned false (failure), or the process

starts "yo-yo’ing" between two or more configurations (failure).

Revision 0.17, April 20248 The build2 Package Manager

5 Dependency Configuration Negotiation

The dependents are expected to cooperate by not overriding "better" values that were set by

other dependents. Consider the following two prefer clauses:

prefer
{
 config.libfoo.buffer = 4096
}

prefer
{
 config.libfoo.buffer = ($config.libfoo.buffer < 4096 \
 ? 4096 \
 : $config.libfoo.buffer)
}

The first version is non-cooperative and should only be used if this dependent requires the

buffer to be exactly 4KB. The second version is cooperative: it will increase the buffer to the

minimum required by this dependent but will respect values above 4KB.

One case where we don’t need to worry about this is when setting the configuration variable

to the "best" possible value. One common example of this is setting a bool configuration to

true.

With a few exceptions discussed below, a dependent must always re-set the configuration

variable, even if to the better value. For example, the following is an incorrect attempt at the

above cooperative prefer clause:

prefer
{
 if ($config.libfoo.buffer < 4096) # Incorrect.
 config.libfoo.buffer = 4096
}

The problem with the above attempt is that the default value could be greater than 4KB, in

which case bpkg will have no idea that there is a dependent relying on this configuration

value.

Before each prefer clause re-evaluation, variables that were first set to their current values

by this dependent are reset to their defaults thus allowing the dependent to change its mind,

for instance, in response to other configuration changes. For example:

While we have no preference about the cache, if enabled/disabled,
we need a bigger/smaller buffer.
#
prefer
{
 min_buffer = ($config.libfoo.cache ? 8192 : 4096)

 config.libfoo.buffer = ($config.libfoo.buffer < $min_buffer \
 ? $min_buffer \
 : $config.libfoo.buffer)
}

accept ($config.libfoo.buffer >= ($config.libfoo.cache ? 8192 : 4096))

9Revision 0.17, April 2024 The build2 Package Manager

5 Dependency Configuration Negotiation

The interesting case to consider in the above example is when config.libfoo.cache
changes from true to false: without the reset to defaults semantics the prefer clause

would have kept the buffer at 8KB (since it’s greater than the 4KB minimum).

Currently accept is always evaluated after prefer and temporary variables (like

min_buffer in the above example) set in prefer are visible in accept. But it’s best not

to rely on this in case it changes in the future. For example, we may try harder to resolve the

"yo-yo’ing" case mentioned above by checking if one of the alternating configurations are

acceptable to everyone without re-evaluation.

This is also the reason why we need a separate accept in the first place. Plus, it allows for

more advanced configuration techniques where we may need to have an acceptance criteria

but no preferences.

Configuration variables that are set by the dependent in the prefer clause are visible in the

subsequent clauses as well as in the subsequent depends values of this dependent. Configu

ration variables that are not set, however, are only visible until the immediately following

reflect clause. For example, in the above listing, config.libfoo.cache would still

be visible in the reflect clause if it were to follow accept but no further. As a result, if

we need to make decisions based on configuration variables that we have no preference about,

they need to be saved in the reflect clause. For example:

depends:
\
libfoo ^1.0.0
{
 # We have no preference about the cache but need to
 # observe its value.
 #
 prefer
 {
 }

 accept (true)

 reflect
 {
 config.hello.libfoo_cache = $config.libfoo.cache
 }
}
\

depends: libbar ^1.0.0 ? ($config.hello.libfoo_cache)

It is possible to determine the origin of the configuration variable value using the

$config.origin() function. It returns either undefined if the variable is undefined

(only possible if it has no default value), default if the variable has the default value from

the config directive in root.build, buildfile if the value is from a buildfile,

normally config.build, or override if the value is a command line override (that is,

user configuration). For example, this is how we could use it if we only wanted to change the

default value (notice that it’s the variable’s name and not its $-expansion that we pass to

$config.origin()):

Revision 0.17, April 202410 The build2 Package Manager

5 Dependency Configuration Negotiation

prefer
{
 config.libfoo.buffer = (\
 $config.origin(config.libfoo.buffer) == ’default’ \
 ? 4096 \
 : $config.libfoo.buffer)
}

The following sub-sections discuss a number of more advanced configuration techniques that

are based on the functionality described in this section.

5.1 Prefer X but Accept X or Y

Consider a configuration variable that is a choice between several mutually exclusive values,

for example, user interface backends that could be, say, cli, gui, or none. In such situa

tions it’s common to prefer one value but being able to work with some subset of them. For

example, we could prefer gui but were also able to make do with cli but not with none.

Here is how we could express such a configuration:

libfoo ^1.0.0
{
 # We prefer ‘gui‘, can also work with ‘cli‘ but not ‘none‘.
 #
 prefer
 {
 config.libfoo.ui = (\
 $config.origin(config.libfoo.ui) == ’default’ || \
 ($config.libfoo.ui != ’gui’ && $config.libfoo.ui != ’cli’) \
 ? ’gui’ \
 : $config.libfoo.ui)
 }

 accept ($config.libfoo.ui == ’gui’ || $config.libfoo.ui == ’cli’)
}

5.2 Use If Enabled

Sometimes we may want to use a feature if it is enabled by someone else but not enable it

ourselves. For example, the feature might be expensive and our use of it tangential, but if it’s

enabled anyway, then we might as well take advantage of it. Here is how we could express

such a configuration:

libfoo ^1.0.0
{
 # Use config.libfoo.x only if enabled by someone else.
 #
 prefer
 {
 }

 accept (true)

 reflect

11Revision 0.17, April 2024 The build2 Package Manager

5.1 Prefer X but Accept X or Y

 {
 config.hello.libfoo_x = $config.libfoo.x
 }
}

5.3 Disable If Enabled by Default

Sometimes we may want to disable a feature that is enabled by default provided that nobody

else needs it. For example, the feature might be expensive and we would prefer to avoid

paying the cost if we are the only ones using this dependency. Here is how we could express

such a configuration:

libfoo ^1.0.0
{
 prefer
 {
 if ($config.origin(config.libfoo.x) == ’default’)
 config.libfoo.x = false
 }

 accept (true)
}

6 Manifests

This chapter describes the general manifest file format as well as the concrete manifests used

by bpkg.

Currently, three manifests are defined: package manifest, repository manifest, and signature

manifest. The former two manifests can also be combined into a list of manifests to form the

list of available packages and the description of a repository, respectively.

6.1 Manifest Format

A manifest is a UTF-8 encoded text restricted to the Unicode graphic characters, tabs (\t),

carriage returns (\r), and line feeds (\n). It contains a list of name-value pairs in the form:

<name>: <value>

For example:

name: libfoo
version: 1.2.3

If a value needs to be able to contain other Unicode codepoints, they should be escaped in a

value-specific manner. For example, the backslash (\) escaping described below can be

extended for this purpose.

Revision 0.17, April 202412 The build2 Package Manager

6 Manifests

The name can contain any characters except : and whitespaces. Newline terminates the pair

unless escaped with \ (see below). Leading and trailing whitespaces before and after name

and value are ignored except in the multi-line mode (see below).

If the first non-whitespace character on the line is #, then the rest of the line is treated as a

comment and ignored except if the preceding newline was escaped or in the multi-line mode

(see below). For example:

This is a comment.
short: This is #not a comment
long: Also \
#not a comment

The first name-value pair in the manifest file should always have an empty name. The value

of this special pair is the manifest format version. The version value shall use the default (that

is, non-multi-line) mode and shall not use any escape sequences. Currently it should be 1, for

example:

: 1
name: libfoo
version: 1.2.3

Any new name that is added without incrementing the version must be optional so that it can

be safely ignored by older implementations.

The special empty name pair can also be used to separate multiple manifests. In this case the

version may be omitted in the subsequent manifests, for example:

: 1
name: libfoo
version: 1.2.3
:
name: libbar
version: 2.3.4

To disable treating of a newline as a name-value pair terminator we can escape it with \. Note

that \ is only treated as an escape sequence when followed by a newline and both are simply

removed from the stream (as opposed to being replaced with a space). To enter a literal \ at

the end of the value, use the \\ sequence. For example:

description: Long text that doesn’t fit into one line \
so it is continued on the next line.

windows-path: C:\foo\bar\\

Notice that in the final example only the last \ needs special handling since it is the only one

that is followed by a newline.

One may notice that in this newline escaping scheme a line consisting of just \ followed by a

newline has no use, except, perhaps, for visual presentation of, arguably, dubious value. For

example, this representation:

13Revision 0.17, April 2024 The build2 Package Manager

6.1 Manifest Format

description: First line. \
\
Second line.

Is semantically equivalent to:

description: First line. Second line.

As a result, such a sequence is "overloaded" to provide more useful functionality in two ways:

Firstly, if : after the name is followed on the next line by just \ and a newline, then it signals

the start of the multi-line mode. In this mode all subsequent newlines and # are treated as

ordinary characters rather than value terminators or comments until a line consisting of just \
and a newline (the multi-line mode terminator). For example:

description:
\
First paragraph.
#
Second paragraph.
\

Expressed as a C-string, the value in the above example is:

"First paragraph.\n#\nSecond paragraph."

Originally, the multi-line mode was entered if : after the name were immediately followed by

\ and a newline but on the same line. While this syntax is still recognized for backwards

compatibility, it is deprecated and will be discontinued in the future.

Note that in the multi-line mode we can still use newline escaping to split long lines, for

example:

description:
\
First paragraph that doesn’t fit into one line \
so it is continued on the next line.
Second paragraph.
\

And secondly, in the simple (that is, non-multi-line) mode, the sole \ and newline sequence is

overloaded to mean a newline. So the previous example can also be represented like this:

description: First paragraph that doesn’t fit into one \
line so it is continued on the next line.\
\
Second paragraph.

Note that the multi-line mode can be used to capture a value with leading and/or trailing

whitespaces, for example:

description:
\
 test

\

Revision 0.17, April 202414 The build2 Package Manager

6.1 Manifest Format

The C-string representing this value is:

" test\n"

EOF can be used instead of a newline to terminate both simple and multi-line values. For

example the following representation results in the same value as in the previous example.

description:
\
 test

<EOF>

By convention, names are all in lower case and multi-word names are separated with -. Note

that names are case-sensitive.

Also by convention, the following name suffixes are used to denote common types of values:

-file
-url
-email

For example:

description: Inline description
description-file: README
package-url: http://www.example.com
package-email: john@example.com

Other common name suffixes (such as -feed) could be added later.

Generally, unless there is a good reason not to, we keep values lower-case (for example,

requires values such as c++11 or linux). An example where we use upper/mixed case

would be license; it seems unlikely gplv2 would be better than GPLv2.

A number of name-value pairs described below allow for the value proper to be optionally

followed by ; and a comment. Such comments serve as additional documentation for the user

and should be one or more full sentences, that is start with a capital letter and end with a

period. Note that unlike #-style comments which are ignored, these comments are considered

to be part of the value. For example:

email: foo-users@example.com ; Public mailing list.

It is recommended that you keep comments short, single-sentence. Note that non-comment

semicolons in such values have to be escaped with a backslash, for example:

url: http://git.example.com/?p=foo\;a=tree

The only other recognized escape sequence in such values is \\, which is replaced with a

single backslash. If a backslash is followed by any other character, then it is treated literally.

15Revision 0.17, April 2024 The build2 Package Manager

6.1 Manifest Format

If a value with a comment is multi-line, then ; must appear on a separate line, for example:

url:
\
http://git.example.com/?p=foo;a=tree
;
Git repository tree.
\

In this case, only lines that consist of a sole non-comment semicolon need escaping, for

example:

license:
\
other: strange
\;
license
\

The only other recognized escape sequence in such multi-line values is lines consisting of two

or more backslashes followed by a semicolon.

In the manifest specifications described below optional components are enclosed in square

brackets ([]). If the name is enclosed in [] then the name-value pair is optional, otherwise –

required. For example:

name: <name>
license: <licenses> [; <comment>]
[description]: <text>

In the above example name is required, license has an optional component (comment),

and description is optional.

In certain situations (for example, shell scripts) it can be easier to parse the binary manifest

representation. The binary representation does not include comments and consists of a

sequence of name-value pairs in the following form:

<name>:<value>\0

That is, the name and the value are separated by a colon and each pair (including the last) is

terminated with the NUL character. Note that there can be no leading or trailing whitespace

characters around the name and any whitespaces after the colon and before the NUL termina

tor are part of the value. Finally, the manifest format versions are always explicit (that is, not

empty) in binary manifest lists.

6.2 Package Manifest

The package manifest (the manifest file found in the package’s root directory) describes a

bpkg package. The manifest synopsis is presented next followed by the detailed description

of each value in subsequent sections.

Revision 0.17, April 202416 The build2 Package Manager

6.2 Package Manifest

The subset of the values up to and including license constitute the package manifest

header. Note that the header is a valid package manifest since all the other values are optional.

There is also no requirement for the header values to appear first or to be in a specific order.

In particular, in a full package manifest they can be interleaved with non-header values.

name: <name>
version: <version>
[upstream-version]: <string>
[type]: <type>
[language]: <lang>
[project]: <name>
[priority]: <priority> [; <comment>]
summary: <text>
license: <licenses> [; <comment>]

[topics]: <topics>
[keywords]: <keywords>
[description]: <text>
[description-file]: <path> [; <comment>]
[description-type]: <text-type>
[package-description]: <text>
[package-description-file]: <path> [; <comment>]
[package-description-type]: <text-type>
[changes]: <text>
[changes-file]: <path> [; <comment>]
[changes-type]: <text-type>

[url]: <url> [; <comment>]
[doc-url]: <url> [; <comment>]
[src-url]: <url> [; <comment>]
[package-url]: <url> [; <comment>]

[email]: <email> [; <comment>]
[package-email]: <email> [; <comment>]
[build-email]: <email> [; <comment>]
[build-warning-email]: <email> [; <comment>]
[build-error-email]: <email> [; <comment>]

[depends]: [*] <alternatives> [; <comment>]
[requires]: [*] <alternatives> [; <comment>]

[tests]: [*] <name> [<version-constraint>]
[examples]: [*] <name> [<version-constraint>]
[benchmarks]: [*] <name> [<version-constraint>]

[builds]: <class-expr> [; <comment>]
[build-include]: <config>[/<target>] [; <comment>]
[build-exclude]: <config>[/<target>] [; <comment>]
[build-auxiliary]: <config> [; <comment>]
[build-auxiliary-<name>]: <config> [; <comment>]
[build-bot]: <pub-key>

[*-build-config]: <args> [; <comment>]

[*-builds]: <class-expr> [; <comment>]
[*-build-include]: <config>[/<target>] [; <comment>]
[*-build-exclude]: <config>[/<target>] [; <comment>]
[*-build-auxiliary]: <config> [; <comment>]
[*-build-auxiliary-<name>]: <config> [; <comment>]
[*-build-bot]: <pub-key>

17Revision 0.17, April 2024 The build2 Package Manager

6.2 Package Manifest

[*-build-email]: <email> [; <comment>]
[*-build-warning-email]: <email> [; <comment>]
[*-build-error-email]: <email> [; <comment>]

[build-file]: <path>

[bootstrap-build]: <text>
[root-build]: <text>
[*-build]: <text>

[bootstrap-build2]: <text>
[root-build2]: <text>
[*-build2]: <text>

[*-name]: <name> [<name>...]
[*-version]: <string>
[*-to-downstream-version]: <regex>

6.2.1 name

name: <name>

The package name. See Package Name for the package name format description. Note that the

name case is preserved for display, in file names, etc.

6.2.2 version

version: <version>
[upstream-version]: <string>

The package version. See Package Version for the version format description. Note that the

version case is preserved for display, in file names, etc.

When packaging existing projects, sometimes you may want to deviate from the upstream

versioning scheme because, for example, it may not be representable as a bpkg package

version or simply be inconvenient to work with. In this case you would need to come up with

an upstream-to-downstream version mapping and use the upstream-version value to

preserve the original version for information.

6.2.3 type, language

[type]: <type>
[language]: <lang>

<type> = <name>[,<sub-options>]
<lang> = <name>[=impl]

The package type and programming language(s).

The currently recognized package types are exe, lib, and other. If the type is not speci

fied, then if the package name starts with lib, then it is assumed to be lib and exe other

wise (see Package Name for details). Other package types may be added in the future and

code that does not recognize a certain package type should treat it as other. The type name

Revision 0.17, April 202418 The build2 Package Manager

6.2.1 name

can be followed by a comma-separated list of sub-options. Currently, the only recognized

sub-option is binless which applies to the lib type indicating a header-only (or equiva

lent) library. For example:

type: lib,binless

The package language must be in the lower case, for example, c, c++, rust, bash. If the

language is not specified, then if the package name has an extension (as in, for example,

libbutl.bash; see Package Name for details) the extension is assumed to name the

package language. Otherwise, cc (unspecified c-common language) is assumed. If a package

uses multiple languages, then multiple language values must be specified. The languages

which are only used in a library’s implementation (as opposed to also in its interface) should

be marked as such. For example, for a C library with C++ implementation:

type: lib
language: c
language: c++=impl

If the use of a language, such as C++, also always implies the use of another language, such as

C, then such an implied language need not be explicitly specified.

6.2.4 project

[project]: <name>

The project this package belongs to. The project name has the same restrictions as the package

name (see Package Name for details) and its case is preserved for display, in directory names,

etc. If unspecified, then the project name is assumed to be the same as the package name.

Projects are used to group related packages together in order to help with organization and

discovery in repositories. For example, packages hello, libhello, and libhello2
could all belong to project hello. By convention, projects of library packages are named

without the lib prefix.

6.2.5 priority

[priority]: <priority> [; <comment>]

<priority> = security | high | medium | low

The release priority (optional). As a guideline, use security for security fixes, high for

critical bug fixes, medium for important bug fixes, and low for minor fixes and/or feature

releases. If not specified, low is assumed.

6.2.6 summary

summary: <text>

19Revision 0.17, April 2024 The build2 Package Manager

6.2.4 project

The short description of the package.

6.2.7 license

license: <licenses> [; <comment>]

<licenses> = <license> [, <license>]*
<license> = [<scheme>:] <name>
<scheme> = other

The package license. The default license name scheme is SPDX License Expression. In its

simplest form, it is just an ID of the license under which this package is distributed. An

optional comment normally gives the full name of the license, for example:

license: MPL-2.0 ; Mozilla Public License 2.0

The following table lists the most commonly used free/open source software licenses and their

SPDX license IDs:

MIT ; MIT License.

BSD-2-Clause ; BSD 2-Clause "Simplified" License
BSD-3-Clause ; BSD 3-Clause "New" or "Revised" License
BSD-4-Clause ; BSD 4-Clause "Original" or "Old" License

GPL-2.0-only ; GNU General Public License v2.0 only
GPL-2.0-or-later ; GNU General Public License v2.0 or later
GPL-3.0-only ; GNU General Public License v3.0 only
GPL-3.0-or-later ; GNU General Public License v3.0 or later

LGPL-2.0-only ; GNU Library General Public License v2 only
LGPL-2.0-or-later ; GNU Library General Public License v2 or later
LGPL-2.1-only ; GNU Lesser General Public License v2.1 only
LGPL-2.1-or-later ; GNU Lesser General Public License v2.1 or later
LGPL-3.0-only ; GNU Lesser General Public License v3.0 only
LGPL-3.0-or-later ; GNU Lesser General Public License v3.0 or later

AGPL-3.0-only ; GNU Affero General Public License v3.0 only
AGPL-3.0-or-later ; GNU Affero General Public License v3.0 or later

Apache-1.0 ; Apache License 1.0
Apache-1.1 ; Apache License 1.1
Apache-2.0 ; Apache License 2.0

MPL-1.0 ; Mozilla Public License 1.0
MPL-1.1 ; Mozilla Public License 1.1
MPL-2.0 ; Mozilla Public License 2.0

BSL-1.0 ; Boost Software License 1.0

Unlicense ; The Unlicense (public domain)

If the package is licensed under multiple licenses, then an SPDX license expression can be

used to specify this, for example:

Revision 0.17, April 202420 The build2 Package Manager

6.2.7 license

https://spdx.org/licenses/

license: Apache-2.0 OR MIT
license: MIT AND BSD-2-Clause

A custom license or extra conditions can be expressed either using the license reference mech

anism of the SPDX license expression or using the other scheme (described below). For

example:

license: LicenseRef-My-MIT-Like; Custom MIT-alike license
license: other: MIT with extra attribution requirements

The other license name scheme can be used to specify licenses that are not defined by

SPDX. The license names in this scheme are free form with case-insensitive comparison. The

following names in this scheme have predefined meaning:

other: public domain ; Released into the public domain
other: available source ; Not free/open source with public source code
other: proprietary ; Not free/open source
other: TODO ; License is not yet decided

For new projects The Unlicense disclaimer with the Unlicense SPDX ID is recommended

over other: public domain.

To support combining license names that use different schemes, the license manifest value

can contain a comma-separated list of license names. This list has the AND semantics, that is,

the user must comply with all the licenses listed. To capture alternative licensing options (the

OR semantics), multiple license manifest values are used, for example:

license: GPL-2.0-only, other: available source
license: other: proprietary

For complex licensing situations it is recommended to add comments as an aid to the user, for

example:

license: LGPL-2.1-only AND MIT ; If linking with GNU TLS.
license: BSD-3-Clause ; If linking with OpenSSL.

For backwards compatibility with existing packages, the following (deprecated) scheme-less

values on the left are recognized as aliases for the new values on the right:

BSD2 BSD-2-Clause
BSD3 BSD-3-Clause
BSD4 BSD-4-Clause
GPLv2 GPL-2.0-only
GPLv3 GPL-3.0-only
LGPLv2 LGPL-2.0-only
LGPLv2.1 LGPL-2.1-only
LGPLv3 LGPL-3.0-only
AGPLv3 AGPL-3.0-only
ASLv1 Apache-1.0
ASLv1.1 Apache-1.1
ASLv2 Apache-2.0
MPLv2 MPL-2.0

21Revision 0.17, April 2024 The build2 Package Manager

6.2.7 license

https://unlicense.org/

public domain other: public domain
available source other: available source
proprietary other: proprietary
TODO other: TODO

6.2.8 topics

[topics]: <topics>

<topics> = <topic> [, <topic>]*

The package topics (optional). The format is a comma-separated list of up to five potentially

multi-word concepts that describe this package. For example:

topics: xml parser, xml serializer

6.2.9 keywords

[keywords]: <keywords>

<keywords> = <keyword> [<keyword>]*

The package keywords (optional). The format is a space-separated list of up to five words that

describe this package. Note that the package and project names as well as words from its

summary are already considered to be keywords and need not be repeated in this value.

6.2.10 description, package-description

[description]: <text>
[description-file]: <path> [; <comment>]
[description-type]: <text-type>
[package-description]: <text>
[package-description-file]: <path> [; <comment>]
[package-description-type]: <text-type>

The detailed description of the project (description) and package

(package-description). If the package description is not specified, it is assumed to be

the same as the project description. It only makes sense to specify the package-descrip
tion value if the project and package are maintained separately. A description can be

provided either inline as a text fragment or by referring to a file within a package (for

example, README), but not both. For package-description-file the recommended

file name is PACKAGE-README or README-PACKAGE.

In the web interface (brep) the description is displayed according to its type. Currently,

pre-formatted plain text, GitHub-Flavored Markdown, and CommonMark are supported with

the following *-type values, respectively:

text/plain
text/markdown;variant=GFM
text/markdown;variant=CommonMark

Revision 0.17, April 202422 The build2 Package Manager

6.2.8 topics

https://github.github.com/gfm
https://spec.commonmark.org/current

If just text/markdown is specified, then the GitHub-Flavored Markdown (which is a

superset of CommonMark) is assumed.

If a description type is not explicitly specified and the description is specified as *-file,

then an attempt to derive the type from the file extension is made. Specifically, the .md and

.markdown extensions are mapped to text/markdown, the .txt and no extension are

mapped to text/plain, and all other extensions are treated as an unknown type, similar to

unknown *-type values. And if a description is not specified as a file, text/plain is

assumed.

6.2.11 changes

[changes]: <text>
[changes-file]: <path> [; <comment>]
[changes-type]: <text-type>

The description of changes in the release.

The tricky aspect is what happens if the upstream release stays the same (and has, say, a

NEWS file to which we point) but we need to make another package release, for example, to

apply a critical patch.

Multiple changes values can be present which are all concatenated in the order specified,

that is, the first value is considered to be the most recent (similar to ChangeLog and NEWS
files). For example:

changes: 1.2.3-2: applied upstream patch for critical bug bar
changes: 1.2.3-1: applied upstream patch for critical bug foo
changes-file: NEWS

Or:

changes:
\
1.2.3-2
 - applied upstream patch for critical bug bar
 - regenerated documentation

1.2.3-1
 - applied upstream patch for critical bug foo
\
changes-file: NEWS

In the web interface (brep) the changes are displayed according to their type, similar to the

package description (see the description value for details). If the changes type is not

explicitly specified, then the types deduced for individual changes values must all be the

same.

23Revision 0.17, April 2024 The build2 Package Manager

6.2.11 changes

6.2.12 url

[url]: <url> [; <comment>]

The project home page URL.

6.2.13 doc-url

[doc-url]: <url> [; <comment>]

The project documentation URL.

6.2.14 src-url

[src-url]: <url> [; <comment>]

The project source repository URL.

6.2.15 package-url

[package-url]: <url> [; <comment>]

The package home page URL. If not specified, then assumed to be the same as url. It only

makes sense to specify this value if the project and package are maintained separately.

6.2.16 email

[email]: <email> [; <comment>]

The project email address. For example, a support mailing list.

6.2.17 package-email

[package-email]: <email> [; <comment>]

The package email address. If not specified, then assumed to be the same as email. It only

makes sense to specify this value if the project and package are maintained separately.

6.2.18 build-email

[build-email]: <email> [; <comment>]

The build notification email address. It is used to send build result notifications by automated

build bots. If unspecified, then no build result notifications for this package are sent by email.

For backwards compatibility with existing packages, if it is specified but empty, then this is

the same as unspecified.

Revision 0.17, April 202424 The build2 Package Manager

6.2.12 url

6.2.19 build-warning-email

[build-warning-email]: <email> [; <comment>]

The build warning notification email address. Unlike build-email, only build warning

and error notifications are sent to this email.

6.2.20 build-error-email

[build-error-email]: <email> [; <comment>]

The build error notification email address. Unlike build-email, only build error notifica

tions are sent to this email.

6.2.21 depends

[depends]: [*] <alternatives> [; <comment>]

Single-line form:

<alternatives> = <alternative> [’|’ <alternative>]*
<alternative> = <dependencies> [’?’ <enable-cond>] [<reflect-var>]
<dependencies> = <dependency> | \
 ’{’ <dependency> [<dependency>]* ’}’ [<version-constraint>]
<dependency> = <name> [<version-constraint>]
<enable-cond> = ’(’ <buildfile-eval-expr> ’)’
<reflect-var> = <config-var> ’=’ <value>

Multi-line form:

<alternatives> =
 <alternative>[
 ’|’
 <alternative>]*

<alternative> =
 <dependencies>
 ’{’
 [
 ’enable’ <enable-cond>
]

 [
 ’require’
 ’{’
 <buildfile-fragment>
 ’}’

] | [

 ’prefer’
 ’{’
 <buildfile-fragment>
 ’}’

 ’accept’ <accept-cond>
]

25Revision 0.17, April 2024 The build2 Package Manager

6.2.19 build-warning-email

 [
 ’reflect’
 ’{’
 <buildfile-fragment>
 ’}’
]
 ’}’

<accept-cond> = ’(’ <buildfile-eval-expr> ’)’

The dependency packages. The most common form of a dependency is a package name

followed by the optional version constraint. For example:

depends: libhello ^1.0.0

See Package Version Constraint for the format and semantics of the version constraint.

Instead of a concrete value, the version in the constraint can also be specified in terms of the

dependent package’s version (that is, its version value) using the special $ value. This

mechanism is primarily useful when developing related packages that should track each

other’s versions exactly or closely. For example:

name: sqlite3
version: 3.18.2
depends: libsqlite3 == $

If multiple packages are specified within a single depends value, they must be grouped with

{}. This can be useful if the packages share a version constraint. The group constraint applies

to all the packages in the group that do not have their own constraint. For example:

depends: { libboost-any libboost-log libboost-uuid ~1.77.1 } ~1.77.0

If the depends value starts with *, then it is a build-time dependency. Otherwise it is

run-time. For example:

depends: * byacc >= 20210619

Most of the build-time dependencies are expected to be tools such as code generators, so you

can think of * as the executable mark printed by ls. An important difference between the two

kinds of dependencies is that in case of cross-compilation a build-time dependency must be

built for the host machine, not the target. Build system modules are also build-time dependen

cies.

Two special build-time dependency names are recognized and checked in an ad hoc manner:

build2 (the build2 build system) and bpkg (the build2 package manager). This allows

us to specify the minimum required build system and package manager versions, for example:

depends: * build2 >= 0.15.0
depends: * bpkg >= 0.15.0

Revision 0.17, April 202426 The build2 Package Manager

6.2.21 depends

If you are developing or packaging a project that uses features from the not yet released

(staged) version of the build2 toolchain, then you can use the pre-release version in the

constraint. For example:

depends: * build2 >= 0.16.0-
depends: * bpkg >= 0.16.0-

A dependency can be conditional, that is, it is only enabled if a certain condition is met. For

example:

depends: libposix-getopt ^1.0.0 ? ($cxx.target.class == ’windows’)

The condition after ? inside () is a buildfile eval context expression that should evaluate

to true or false, as if it were specified in the buildfile if directive (see Expansion

and Quoting and Conditions (if-else) for details).

The condition expression is evaluated after loading the package build system skeleton, that is,

after loading its root.build (see Package Build System Skeleton for details). As a result,

variable values set by build system modules that are loaded in root.build as well as the

package’s configuration (including previously reflected; see below) or computed values can

be referenced in dependency conditions. For example, given the following root.build:

root.build

...

using cxx

MinGW ships POSIX <getopt.h>.
#
need_getopt = ($cxx.target.class == ’windows’ && \
 $cxx.target.system != ’mingw32’)

config [bool] config.hello.regex ?= false

We could have the following conditional dependencies:

depends: libposix-getopt ^1.0.0 ? ($need_getopt) ; Windows && !MinGW.
depends: libposix-regex ^1.0.0 ? ($config.hello.regex && \
 $cxx.target.class == ’windows’)

The first depends value in the above example also shows the use of an optional comment.

It’s a good idea to provide it if the condition is not sufficiently self-explanatory.

A dependency can "reflect" configuration variables to the subsequent depends values and to

the package configuration. This can be used to signal whether a conditional dependency is

enabled or which dependency alternative was selected (see below). The single-line form of

depends can only reflect one configuration variable. For example:

depends: libposix-regex ^1.0.0 \
 ? ($cxx.target.class == ’windows’) \
 config.hello.external_regex=true

27Revision 0.17, April 2024 The build2 Package Manager

6.2.21 depends

root.build

...

using cxx

config [bool] config.hello.external_regex ?= false

buildfile

libs =

if $config.hello.external_regex
 import libs += libposix-regex%lib{posix-regex}

exe{hello}: ... $libs

In the above example, if the hello package is built for Windows, then the dependency on

libposix-regex will be enabled and the package will be configured with

config.hello.external_regex=true. This is used in the buildfile to decide

whether to import libposix-regex. While in this example it would have probably been

easier to just duplicate the check for Windows in the buildfile (or, better yet, factor this

check to root.build and share the result via a computed variable between manifest and

buildfile), the reflect mechanism is the only way to communicate the selected depen

dency alternative (discussed next).

An attempt to set a reflected configuration variable that is overridden by the user is an error.

In a sense, configuration variables that are used to reflect information should be treated as the

package’s implementation details if the package management is involved. If, however, the

package is configured without bpkg’s involvement, then these variables could reasonably be

provided as user configuration.

If you feel the need to allow a reflected configuration variable to also potentially be supplied

as user configuration, then it’s probably a good sign that you should turn things around: make

the variable only user-configurable and use the enable condition instead of reflect. Alterna

tively, you could try to recognize and handle user overrides with the help of the

$config.origin() function discussed in Dependency Configuration Negotiation.

While multiple depends values are used to specify multiple packages with the AND seman

tics, inside depends we can specify multiple packages (or groups of packages) with the OR

semantics, called dependency alternatives. For example:

depends: libmysqlclient >= 5.0.3 | libmariadb ^10.2.2

When selecting an alternative, bpkg only considers packages that are either already present

in the build configuration or are selected as dependencies by other packages, picking the first

alternative with a satisfactory version constraint and an acceptable configuration. As a result,

the order of alternatives expresses a preference. If, however, this does not yield a suitable

alternative, then bpkg fails asking the user to make the selection.

Revision 0.17, April 202428 The build2 Package Manager

6.2.21 depends

For example, if the package with the above dependency is called libhello and we build it

in a configuration that already has both libmysqlclient and libmariadb, then bpkg
will select libmysqlclient, provided the existing version satisfies the version constraint.

If, however, there are no existing packages in the build configuration and we attempt to build

just libhello, then bpkg will fail asking the user to pick one of the alternatives. If we

wanted to make bpkg select libmariadb we could run:

$ bpkg build libhello ?libmariadb

While bpkg’s refusal to automatically pick an alternative that would require building a new

package may at first seem unfriendly to the user, practical experience shows that such extra

user-friendliness would rarely justify the potential confusion that it may cause.

Also note that it’s not only the user that can pick a certain alternative but also a dependent

package. Continuing with the above example, if we had hello that depended on libhello
but only supported MariaDB (or provided a configuration variable to explicitly select the

database), then we could have the following in its manifest:

depends: libmariadb ; Select MariaDB in libhello.
depends: libhello ^1.0.0

Dependency alternatives can be combined with all the other features discussed above: groups,

conditional dependencies, and reflect. As mentioned earlier, reflect is the only way to commu

nicate the selection to subsequent depends values and the package configuration. For

example:

depends: libmysqlclient >= 5.0.3 config.hello.db=’mysql’ | \
 libmariadb ^10.2.2 ? ($cxx.target.class != ’windows’) \
 config.hello.db=’mariadb’

depends: libz ^1.2.1100 ? ($config.hello.db == ’mysql’)

If an alternative is conditional and the condition evaluates to false, then this alternative is

not considered. If all but one alternative are disabled due to conditions, then this becomes an

ordinary dependency. If all the alternatives are disabled due to conditions, then the entire

dependency is disabled. For example:

depends: libmysqlclient >= 5.0.3 ? ($config.hello.db == ’mysql’) | \
 libmariadb ^10.2.2 ? ($config.hello.db == ’mariadb’)

While there is no need to use the dependency alternatives in the above example (since the

alternatives are mutually exclusive), it makes for good documentation of intent.

Besides as a single line, the depends value can also be specified in a multi-line form which,

besides potentially better readability, provides additional functionality. In the multi-line form,

each dependency alternative occupies a separate line and | can be specified either at the end

of the dependency alternative line or on a separate line. For example:

29Revision 0.17, April 2024 The build2 Package Manager

6.2.21 depends

depends:
\
libmysqlclient >= 5.0.3 ? ($config.hello.db == ’mysql’) |
libmariadb ^10.2.2 ? ($config.hello.db == ’mariadb’)
\

A dependency alternative can be optionally followed by a block containing a number of

clauses. The enable clause is the alternative way to specify the condition for a conditional

dependency while the reflect clause is the alternative way to specify the reflected configu

ration variable. The block may also contain #-style comments, similar to buildfile. For

example:

depends:
\
libmysqlclient >= 5.0.3
{
 reflect
 {
 config.hello.db = ’mysql’
 }
}
|
libmariadb ^10.2.2
{
 # TODO: MariaDB support on Windows.
 #
 enable ($cxx.target.class != ’windows’)

 reflect
 {
 config.hello.db = ’mariadb’
 }
}
\

While the enable clause is essentially the same as its inline ? variant, the reflect clause

is an arbitrary buildfile fragment that can have more complex logic and assign multiple

configuration variables. For example:

libmariadb ^10.2.2
{
 reflect
 {
 if ($cxx.target.class == ’windows’)
 config.hello.db = ’mariadb-windows’
 else
 config.hello.db = ’mariadb-posix’
 }
}

The multi-line form also allows us to express our preferences and requirements for the depen

dency configuration. If all we need is to set one or more bool configuration variables to

true (which usually translates to enabling one or more features), then we can use the

require clause. For example:

Revision 0.17, April 202430 The build2 Package Manager

6.2.21 depends

libmariadb ^10.2.2
{
 require
 {
 config.libmariadb.cache = true

 if ($cxx.target.class != ’windows’)
 config.libmariadb.tls = true
 }
}

For more complex dependency configurations instead of require we can use the prefer
and accept clauses. The prefer clause can set configuration variables of any type and to

any value in order to express the package’s preferred configuration while the accept condi

tion evaluates whether any given configuration is acceptable. If used instead of require,

both prefer and accept must be present. For example:

libmariadb ^10.2.2
{
 # We prefer the cache but can work without it.
 # We need the buffer of at least 4KB.
 #
 prefer
 {
 config.libmariadb.cache = true

 config.libmariadb.buffer = ($config.libmariadb.buffer < 4096 \
 ? 4096 \
 : $config.libmariadb.buffer)
 }

 accept ($config.libmariadb.buffer >= 4096)
}

The require clause is essentially a shortcut for specifying the prefer/accept clauses

where the accept condition simply verifies all the variable values assigned in the prefer
clause. It is, however, further restricted to the common case of only setting bool variables

and only to true to allow additional optimizations during the configuration negotiation.

The require and prefer clauses are arbitrary buildfile fragments similar to

reflect while the accept clause is a buildfile eval context expression that should

evaluate to true or false, similar to enable.

Given the require and prefer/accept clauses of all the dependents of a particular

dependency, bpkg tries to negotiate a configuration acceptable to all of them as described in

Dependency Configuration Negotiation.

All the clauses are evaluated in the specified order, that is, enable, then require or

prefer/accept, and finally reflect, with the (negotiated, in case of prefer) configu

ration values set by preceding clauses available for examination by the subsequent clauses in

this depends value as well as in all the subsequent ones. For example:

31Revision 0.17, April 2024 The build2 Package Manager

6.2.21 depends

depends:
\
libmariadb ^10.2.2
{
 prefer
 {
 config.libmariadb.cache = true

 config.libmariadb.buffer = ($config.libmariadb.buffer < 4096 \
 ? 4096 \
 : $config.libmariadb.buffer)
 }

 accept ($config.libmariadb.buffer >= 4096)

 reflect
 {
 config.hello.buffer = $config.libmariadb.buffer
 }
}
\

depends: liblru ^1.0.0 ? ($config.libmariadb.cache)

The above example also highlights the difference between the require/prefer and

reflect clauses that is easy to mix up: in require/prefer we set the dependency’s

while in reflect we set the dependent’s configuration variables.

6.2.22 requires

[requires]: [*] <alternatives> [; <comment>]

<alternatives> = <alternative> [’|’ <alternative>]*
<alternative> = <requirements> [’?’ [<enable-cond>]] [<reflect-var>]
<requirements> = [<requirement>] | \
 ’{’ <requirement> [<requirement>]* ’}’ [<version-constraint>]
<requirement> = <name> [<version-constraint>]
<enable-cond> = ’(’ <buildfile-eval-expr> ’)’
<reflect-var> = <config-var> ’=’ <value>

The package requirements other than other packages. Such requirements are normally

checked in an ad hoc way during package configuration by its buildfiles and the primary

purpose of capturing them in the manifest is for documentation. However, there are some

special requirements that are recognized by the tooling (see below). For example:

requires: c++11
requires: linux | windows | macos
requires: libc++ ? ($macos) ; libc++ if using Clang on Mac OS.

The format of the requires value is similar to depends with the following differences.

The requirement name (with or without version constraint) can mean anything (but must still

be a valid package name). Only the enable and reflect clauses are permitted. There is a

simplified syntax with either the requirement or enable condition or both being empty and

where the comment carries all the information (and is thus mandatory). For example:

Revision 0.17, April 202432 The build2 Package Manager

6.2.22 requires

requires: ; X11 libs.
requires: ? ($windows) ; Only 64-bit.
requires: ? ; Only 64-bit if on Windows.
requires: x86_64 ? ; Only if on Windows.

Note that requires can also be used to specify dependencies on system libraries, that is, the

ones not to be packaged. In this case it may make sense to also specify the version constraint.

For example:

requires: libx11 >= 1.7.2

To assist potential future automated processing, the following pre-defined requirement names

should be used for the common requirements:

c++98
c++03
c++11
c++14
c++17
c++20
c++23

posix
linux
macos
freebsd
openbsd
netbsd
windows

gcc[_X.Y.Z] ; For example: gcc_6, gcc_4.9, gcc_5.0.0
clang[_X.Y] ; For example: clang_6, clang_3.4, clang_3.4.1
msvc[_N.U] ; For example: msvc_14, msvc_15.3

The following pre-defined requirement names are recognized by automated build bots:

bootstrap
host

The bootstrap value should be used to mark build system modules that require bootstrap

ping. The host value should be used to mark packages, such source code generators, that are

normally specified as build-time dependencies by other packages and therefore should be built

in a host configuration. See the bbot documentation for details.

6.2.23 tests, examples, benchmarks

[tests]: [*] <package> [’?’ <enable-cond>] [<reflect-var>]
[examples]: [*] <package> [’?’ <enable-cond>] [<reflect-var>]
[benchmarks]: [*] <package> [’?’ <enable-cond>] [<reflect-var>]

<package> = <name> [<version-constraint>]
<enable-cond> = ’(’ <buildfile-eval-expr> ’)’
<reflect-var> = <config-var> ’=’ <value>

33Revision 0.17, April 2024 The build2 Package Manager

6.2.23 tests, examples, benchmarks

Separate tests, examples, and benchmarks packages. If the value starts with *, then the

primary package is a build-time dependency for the specified package. Otherwise it is

run-time. See the depends value for details on build-time dependencies.

These packages are built and tested by automated build bots together with the primary

package (see the bbot documentation for details). This, in particular, implies that these pack

ages must be available from the primary package’s repository or its complement repositories,

recursively. The recommended naming convention for these packages is the primary package

name followed by -tests, -examples, or -benchmarks, respectively. For example:

name: hello
tests: hello-tests
examples: hello-examples

See Package Version Constraint for the format and semantics of the optional version

constraint. Instead of a concrete value, it can also be specified in terms of the primary

package’s version (see the depends value for details), for example:

tests: hello-tests ~$

Note that normally the tests, etc., packages themselves (we’ll call them all test packages for

short) do not have an explicit dependency on the primary package (in a sense, the primary

package has a special test dependency on them). They are also not built by automated build

bots separately from their primary package but may have their own build constraints, for

example, to be excluded from building on some platforms where the primary package is still

built, for example:

name: hello-tests
builds: -windows

Also note that a test package may potentially be used as a test dependency for multiple

primary packages. In this case a primary package normally needs to reflect to the test package

the fact that it is the one being tested. This can be achieved by setting the test package’s

configuration variable (see the depends value for details on reflection). For example:

name: hello-foo
tests: hello-tests config.hello_tests.test=hello-foo

name: hello-bar
tests: hello-tests config.hello_tests.test=hello-bar

If it is plausible that the test package may also be built explicitly, for example, to achieve a

more complicated setup (test multiple main packages simultaneously, etc), then the test

dependencies need to be made conditional in the primary packages so that the explicit config

uration is preferred over the reflections (see the depends value for details on conditional

dependencies). For example:

Revision 0.17, April 202434 The build2 Package Manager

6.2.23 tests, examples, benchmarks

name: hello-foo
tests: hello-tests \
? (!$defined(config.hello_tests.test)) config.hello_tests.test=hello-foo

name: hello-bar
tests: hello-tests \
? (!$defined(config.hello_tests.test)) config.hello_tests.test=hello-bar

Note that in contrast to the depends value, both the reflection and condition refer to the vari

ables defined not by the package which specifies the test dependency (primary package), but

the package such a dependency refers to (test package).

6.2.24 builds

[builds]: [<class-uset> ’:’] [<class-expr>] [; <comment>]

<class-uset> = <class-name> [<class-name>]*
<class-expr> = <class-term> [<class-term>]*
<class-term> = (’+’|’-’|’&’)[’!’](<class-name> | ’(’ <class-expr> ’)’)

The common package build target configurations. They specify the target configuration

classes the package should or should not be built for by automated build bots, unless overrid

den by a package configuration-specific value (see *-build-config for details). For

example:

builds: -windows

Build target configurations can belong to multiple classes with their names and semantics

varying between different build bot deployments. However, the pre-defined none,

default, all, host, and build2 classes are always provided. If no builds value is

specified in the package manifest, then the default class is assumed.

A target configuration class can also derive from another class in which case configurations

that belong to the derived class are treated as also belonging to the base class (or classes,

recursively). See the Build Configurations page of the build bot deployment for the list of

available target configurations and their classes.

The builds value consists of an optional underlying class set (<class-uset>) followed

by a class set expression (<class-expr>). The underlying set is a space-separated list of

class names that define the set of build target configurations to consider. If not specified, then

all the configurations belonging to the default class are assumed. The class set expression

can then be used to exclude certain configurations from this initial set.

The class expression is a space-separated list of terms that are evaluated from left to right. The

first character of each term determines whether the build target configuration that belong to its

set are added to (+), subtracted from (-), or intersected with (&) the current set. If the second

character in the term is !, then its set of configuration is inverted against the underlying set.

The term itself can be either the class name or a parenthesized expression. Some examples

(based on the cppget.org deployment):

35Revision 0.17, April 2024 The build2 Package Manager

6.2.24 builds

https://ci.cppget.org/?build-configs

builds: none ; None.
builds: all ; All (suitable for libraries).
builds: all : &host ; All host (suitable for tools).
builds: default ; All default.
builds: default : &host ; Default host.
builds: default legacy ; All default and legacy.
builds: default legacy : &host ; Default and legacy host.
builds: -windows ; Default except Windows.
builds: all : -windows ; All except Windows.
builds: all : -mobile ; All except mobile.
builds: all : &gcc ; All with GCC only.
builds: all : &gcc-8+ ; All with GCC 8 and up only.
builds: all : &gcc -optimized ; All GCC without optimization.
builds: all : &gcc &(+linux +macos) ; All GCC on Linux and Mac OS.

Notice that the colon and parentheses must be separated with spaces from both preceding and

following terms.

Multiple builds values are evaluated in the order specified and as if they were all part of a

single expression. Only the first value may specify the underlying set. The main reason for

having multiple values is to provide individual reasons (as the builds value comments) for

different parts of the expression. For example:

builds: default experimental ; Only modern compilers are supported.
builds: -gcc ; GCC is not supported.
builds: -clang ; Clang is not supported.

builds: default
builds: -(+macos &gcc) ; Homebrew GCC is not supported.

The builds value comments are used by the web interface (brep) to display the reason for

the build target configuration exclusion.

After evaluating all the builds values, the final configuration set can be further fine-tuned

using the build-{include, exclude} patterns.

6.2.25 build-{include, exclude}

[build-include]: <config>[/<target>] [; <comment>]
[build-exclude]: <config>[/<target>] [; <comment>]

The common package build inclusions and exclusions. The build-include and

build-exclude values further reduce the configuration set produced by evaluating the

builds values. The config and target values are filesystem wildcard patterns which are

matched against the build target configuration names and target names (see the bbot docu

mentation for details). In particular, the * wildcard matches zero or more characters within the

name component while the ** sequence matches across the components. Plus, wildcard-only

pattern components match absent name components. For example:

build-exclude: windows** # matches windows_10-msvc_15
build-exclude: macos*-gcc** # matches macos_10.13-gcc_8.1-O3
build-exclude: linux-gcc*-* # matches linux-gcc_8.1 and linux-gcc_8.1-O3

Revision 0.17, April 202436 The build2 Package Manager

6.2.25 build-{include, exclude}

The exclusion and inclusion patterns are applied in the order specified with the first match

determining whether the package will be built for this configuration and target. If none of the

patterns match (or none we specified), then the package is built.

As an example, the following value will exclude 32-bit builds for the MSVC 14 compiler:

build-exclude: *-msvc_14**/i?86-** ; Linker crash.

As another example, the following pair of values will make sure that a package is only built

on Linux:

build-include: linux**
build-exclude: ** ; Only supported on Linux.

Note that the comment of the matching exclusion is used by the web interface (brep) to

display the reason for the build target configuration exclusion.

6.2.26 build-auxiliary

[build-auxiliary]: <config> [; <comment>]
[build-auxiliary-<name>]: <config> [; <comment>]

The common package build auxiliary configurations. The build-auxiliary values can

be used to specify auxiliary configurations that provide additional components which are

required for building or testing a package and that are impossible or impractical to provide as

part of the build configuration itself. For example, a package may need access to a suitably

configured database, such as PostgreSQL, in order to run its tests. Currently no more than 9

auxiliary configurations can be specified.

The config value is a filesystem wildcard patterns which is matched against the auxiliary

configuration names (which are in turn derived from auxiliary machine names; see the bbot

documentation for details). In particular, the * wildcard matches zero or more characters

within the name component while the ** sequence matches across the components. Plus,

wildcard-only pattern components match absent name components. For example:

build-auxiliary: linux_debian_12-postgresql_16
build-auxiliary: linux_*-postgresql_*
build-auxiliary: *-postgresql**

If multiple auxiliary configurations match the specified pattern, then one is picked at random

for every build.

If multiple auxiliary configurations are required, then they must be given distinct names with

the name component. For example:

build-auxiliary-pgsql: *-postgresql_*
build-auxiliary-mysql: *-mysql_*

Another example:

37Revision 0.17, April 2024 The build2 Package Manager

6.2.26 build-auxiliary

build-auxiliary-primary: *-postgresql_*
build-auxiliary-secondary: *-postgresql_*

Auxiliary machines communicate information about their setup to the build machine using

environment variables (see auxiliary-environment for details). For example, an auxil

iary machine that provides a test PostgreSQL database may need to communicate the host IP

address and port on which it can be accessed as well as the user to login as and the database

name to use. For example:

DATABASE_HOST=192.168.0.1
DATABASE_PORT=5432
DATABASE_USER=test
DATABASE_NAME=test

If the auxiliary configuration is specified as build-auxiliary-<name>, then capitalized

and sanitized name_ is used as a prefix in the environment variables corresponding to the

machine. For example, for the auxiliary configurations specified as:

build-auxiliary-pg-sql: *-postgresql_*
build-auxiliary-my-sql: *-mysql_*

The environment variables could be:

PG_SQL_DATABASE_HOST=192.168.0.1
PG_SQL_DATABASE_PORT=5432
...

MY_SQL_DATABASE_HOST=192.168.0.2
MY_SQL_DATABASE_PORT=3306
...

The auxiliary environment variables are in effect for the entire build. The recommended place

to propagate them to the package configuration is the *-build-config value. For

example:

build-auxiliary: *-postgresql_*
default-build-config:
\
config.hello.pgsql_host=$getenv(DATABASE_HOST)
config.hello.pgsql_port=$getenv(DATABASE_PORT)
...
\

6.2.27 build-bot

[build-bot]: <pub-key>

The common package build custom bot public key (see build2 build bot manual for back

ground). Multiple build-bot values can be specified to list several custom build bots. If

specified, then such custom bots will be used instead of (note: not in addition to) the default

bots to build this package. Custom bots can be used, for example, to accommodate packages

that have special requirements, such as proprietary dependencies, and which cannot be

fulfilled using the default bots. The public key should be in the PEM format. For example:

Revision 0.17, April 202438 The build2 Package Manager

6.2.27 build-bot

build-bot:
\
-----BEGIN PUBLIC KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAw5liP5pyU9ebC/nD3djZ
1H2dlKmUyiX0Z8POvKhLREd0B3rM59bPcnbRB4HMIhj0J0hUBvS8xb4u5udCPToa
x0A/LMWZ6claiivNtJ3CdLV98eklWdNUg5WXOuqq9QDKXw2ZpGbwDwCOh6aHSWVq
98N9AQx0ZMmMWz3qhRyxPfh+GeJ05uj2ohU9FeUJxeqUcgJT/UcMZ3+7KYbwr+Uq
/HCoX1BmN6nvzhQGHvJIZ2IcjvOQ0AUrPmpSZN01Zr3ZEpkHM3hJWNLu3ntJLGBQ
0aT5kG3iqFyr9q3M3c4J8c0AWrnDjvj0qnCyjNwqW+qIpatmCNT43DmgYr9fQLW0
UHusburz53AbXs12zu3gZzkb0irlShatkMqqQaqaU0/+zw1LnoZ+rvmn2XV97UuK
LFKMKXCnyi2ZG65IZHGkjBVAPuvsX6RgLNyner/QtkDJTbfhktInbG08dCPqv1EF
1OtcYKMTn8I5P2VmMO6SXXDLMSdU8b5DA5EY6Ca6JBB8g06S9sqGqXgQFysAnZs1
VFgMopf8WZqj23x+DX+9KKT2pVnjbwRvBAntuCDoO75gWoETDnCQXEei/PbyamPq
9+NjNsTDn67iJTGncZbII+eciY2YiFHm6GMzBPsUYlQcxiuO4X36jW6m2rwuw37K
oFDbGI3uY4LnhwmDFLbjtk8CAwEAAQ==
-----END PUBLIC KEY-----
\

Note that such custom build bots must offer the same set of machines (or a subset thereof) as

the default bots. In other words, you cannot invent new build configuration names (and the

corresponding machines) with custom build bots – for that you would need to run your own

brep deployment. Note also that the list of machines offered by custom bots should be

consistent with the build configurations enabled by the package (see builds for details). For

example, if the package enables a configuration that is not offered by any of the custom bots

listed, then this configuration will remain unbuilt forever.

Note that custom build bot public keys are publicly known and nothing prevents someone else

from specifying your bot’s public key in their own package and thus triggering a build on

your bot of a potentially rogue package. As a result, carefully consider the information that

you make available in your custom machines (which will be easy to exfiltrate) as well as the

environment in which you run your custom bots (which can potentially be compromised). In

the future, bbot may offer mechanisms to restrict the names and locations of packages that it

is allowed to build.

6.2.28 *-build-config

[*-build-config]: <args> [; <comment>]

<args> = [[[+|-]<prefix>:](<option>|<config-var>)]* \
 [(+|-)<prefix>:]* \
 [<dependency-spec>]* \
 [<package-specific-vars>]*

<dependency-spec> = [{ <config-var> [<config-var>]* }+] <dependency>
<dependency> = (?[sys:]|sys:)<name>[<version-spec>]
<version-spec> = /<version> | <version-constraint>
<package-specific-vars> = { <config-var> [<config-var>]* }+ <name>

[*-builds]: <class-expr> [; <comment>]
[*-build-include]: <config>[/<target>] [; <comment>]
[*-build-exclude]: <config>[/<target>] [; <comment>]
[*-build-auxiliary]: <config> [; <comment>]
[*-build-auxiliary-<name>]: <config> [; <comment>]
[*-build-bot]: <pub-key>

39Revision 0.17, April 2024 The build2 Package Manager

6.2.28 *-build-config

[*-build-email]: <email> [; <comment>]
[*-build-warning-email]: <email> [; <comment>]
[*-build-error-email]: <email> [; <comment>]

The package build configurations where the substring matched by * in *-build-config
denotes the configuration name. If specified, then the package is built in these configurations

by automated build bots in addition to the default configuration (which is called default).

The *-build-config values contain whitespace separated lists of potentially

double/single-quoted package configuration arguments. The global (as opposed to

package-specific) options and variables can be prefixed with the build bot worker script step

ids or a leading portion thereof to restrict it to a specific step, operation, phase, or tool (see

bbot worker step ids). The prefix can optionally begin with the + or - character (in this case

the argument can be omitted) to enable or disable the respective step (see the list of worker

steps which can be enabled or disabled). Unprefixed global options, variables, and dependen

cies are passed to the bpkg-pkg-build(1) command at the bpkg.configure.build
step. The package-specific configuration variables for this and/or the separate test packages

are passed to bpkg-pkg-build(1) at the bpkg.configure.build and

bpkg.test-separate-installed.configure.build steps. For example:

network-build-config: config.libfoo.network=true; Enable networking API.

cache-build-config:
\
config.libfoo.cache=true
config.libfoo.buffer=4096
;
Enable caching.
\

libbar-network-build-config:
\
{ config.libbar.network=true }+ ?libbar
;
Enable networking API in libbar.
\

older-libz-build-config: "?libz ^1.0.0"; Test with older libz version.

sys-build-config:
\
?sys:libbar ?sys:libz
;
Test with system dependencies.
\

bindist-build-config:
\
+bpkg.bindist.debian:--recursive=full
-bbot.sys-install:
+bbot.bindist.upload:
;
Generate and upload binary distribution package but don’t test its installation.
\

load-tests-build-config:

Revision 0.17, April 202440 The build2 Package Manager

6.2.28 *-build-config

\
{ config.libfoo_tests.load=true }+ libfoo-tests
;
Enable load testing.
\

Note that options with values can only be specified using the single argument notation, for

example, --verbose=4.

The package build configuration can override the common build target configurations set

(specified with builds and build-{include, exclude}) by specifying the matching

*-builds and/or *-build-{include, exclude} values. For example:

network-builds: linux; Only supported on Linux.
network-build-config: config.libfoo.network=true; Enable networking API.

Note that the common build target configurations set is overridden hierarchically meaning that

the *-build-{include, exclude} overrides don’t discard the common builds

values.

The package build configuration can override the common build auxiliary machines. Note that

the auxiliary machine set is overridden entirely, meaning that specifying one

*-build-auxiliary value discard all the common build-auxiliary values for this

package configuration.

The package build configuration can override the common build custom bots. Note that the

custom bot set is overridden entirely, meaning that specifying one *-build-bot value

discards all the common build-bot values for this package configuration.

The package build configuration can override the common build notification email addresses

(specified with build-email, build-warning-email, and build-error-email)

by specifying the matching *-build-email and/or *-build-{warning,
error}-email values. For example:

bindist-build-config:
\
+bpkg.bindist.debian:--recursive=full
+bbot.bindist.upload:
;
Generate and upload binary distribution package.
\
bindist-build-error-email: builds@example.org

Note that to disable all the build notification emails for a specific package build configuration,

specify the empty *-build-email value. For example:

sys-build-config: ?sys:libz; Test with system dependencies.
sys-build-email:

The default configuration should normally build the package with no configuration arguments

and for the common target build configurations set. While not recommended, this can be over

ridden by using the special default configuration name. For example:

41Revision 0.17, April 2024 The build2 Package Manager

6.2.28 *-build-config

default-build-config: config.libfoo.cache=true

6.2.29 build-file

[build-file]: <path>

[bootstrap-build]: <text>
[root-build]: <text>
[*-build]: <text>

[bootstrap-build2]: <text>
[root-build2]: <text>
[*-build2]: <text>

The contents of the mandatory bootstrap.build file, optional root.build file, and

additional files included by root.build, or their alternative naming scheme variants

(bootstrap.build2, etc). Packages with the alternative naming scheme should use the

*-build2 values instead of *-build. See Package Build System Skeleton for background.

These files must reside in the package’s build/ subdirectory and have the .build exten

sion (or their alternative names). They can be provided either inline as text fragments or, for

additional files, by referring to them with a path relative to this subdirectory, but not both. The

-build/-build2 manifest value name prefixes must be the file paths relative to this

subdirectory with the extension stripped.

As an example, the following values correspond to the build/config/common.build

file:

build-file: config/common.build

config/common-build:
\
config [bool] config.libhello.fancy ?= false
\

And the following values correspond to the build2/config/common.build2 file in a

package with the alternative naming scheme:

build-file: config/common.build2

config/common-build2:
\
config [bool] config.libhello.fancy ?= false
\

If unspecified, then the package’s bootstrap.build, root.build, and

build/config/*.build files (or their alternative names) will be automatically added,

for example, when the package list manifest is created.

Revision 0.17, April 202442 The build2 Package Manager

6.2.29 build-file

6.2.30 *-{name, version, to-downstream-version}

[<distribution>-name]: <name> [<name>...]
[<distribution>-version]: <string>
[<distribution>-to-downstream-version]: <regex>

<distribution> = <name>[_<version>]
<regex> = /<pattern>/<replacement>/

The binary distribution package name and version mapping. The -name value specifies the

distribution package(s) this bpkg package maps to. If unspecified, then appropriate name(s)

are automatically derived from the bpkg package name (name). Similarly, the -version
value specifies the distribution package version. If unspecified, then the

upstream-version value is used if specified and the bpkg version (version) other

wise. While the -to-downstream-version values specify the reverse mapping, that is,

from the distribution version to the bpkg version. If unspecified or none match, then the

appropriate part of the distribution version is used. For example:

name: libssl
version 1.1.1+18
debian-name: libssl1.1 libssl-dev
debian-version: 1.1.1n
debian-to-downstream-version: /1\.1\.1[a-z]/1.1.1/
debian-to-downstream-version: /([3-9])\.([0-9]+)\.([0-9]+)/\1.\2.\3/

If upstream-version is specified but the the distribution package version should be the

same as the bpkg package version, then the special $ -version value can be used. For

example:

debian-version: $

The <distribution> name prefix consists of the distribution name followed by the

optional distribution version. If the version is omitted, then the value applies to all versions.

Some examples of distribution names and versions:

debian
debian_10
ubuntu_16.04
fedora_32
rhel_8.5
freebsd_12.1
windows_10
macos_10
macos_10.15
macos_12

Note also that some distributions are like others (for example, ubuntu is like debian) and

the corresponding "base" distribution values are considered if no "derived" values are speci

fied.

The -name value is used both during package consumption as a system package and produc

tion with the bpkg-pkg-bindist(1) command. During production, if multiple mappings

match, then the value with the highest matching distribution version from the package mani

43Revision 0.17, April 2024 The build2 Package Manager

6.2.30 *-{name, version, to-downstream-version}

fest with the latest version is used. If it’s necessary to use different names for the generated

binary packages (called "non-native packages" in contrast to "native packages" that come

from the distribution), the special 0 distribution version can be used to specify such a

mapping. For example:

name: libsqlite3
debian_9-name: libsqlite3-0 libsqlite3-dev
debian_0-name: libsqlite3 libsqlite3-dev

Note that this special non-native mapping is ignored during consumption and a deviation in

the package names that it introduces may make it impossible to use native and non-native

binary packages interchangeably, for example, to satisfy dependencies.

The exact format of the -name and -version values and the distribution version part that

is matched against the -to-downstream-version pattern are distribution-specific. For

details, see Debian Package Mapping and Fedora Package Mapping.

6.3 Package List Manifest for pkg Repositories

The package list manifest (the packages.manifest file found in the pkg repository root

directory) describes the list of packages available in the repository. First comes a manifest that

describes the list itself (referred to as the list manifest). The list manifest synopsis is presented

next:

sha256sum: <sum>

After the list manifest comes a (potentially empty) sequence of package manifests. These

manifests shall not contain any *-file or incomplete depends values (such values should

be converted to their inline versions or completed, respectively) but must contain the

*-build values (unless the corresponding files are absent) and the following additional (to

package manifest) values:

location: <path>
sha256sum: <sum>

The detailed description of each value follows in the subsequent sections.

6.3.1 sha256sum (list manifest)

sha256sum: <sum>

The SHA256 checksum of the repositories.manifest file (described below) that

corresponds to this repository. The sum value should be 64 characters long (that is, just the

SHA256 value, no file name or any other markers), be calculated in the binary mode, and use

lower-case letters.

This checksum is used to make sure that the repositories.manifest file that was

fetched is the same as the one that was used to create the packages.manifest file. This

also means that if repositories.manifest is modified in any way, then pack
ages.manifest must be regenerated as well.

Revision 0.17, April 202444 The build2 Package Manager

6.3 Package List Manifest for pkg Repositories

6.3.2 location (package manifest)

location: <path>

The path to the package archive file relative to the repository root. It should be in the POSIX

representation.

if the repository keeps multiple versions of the package and places them all into the repository

root directory, it can get untidy. With location we allow for sub-directories.

6.3.3 sha256sum (package manifest)

sha256sum: <sum>

The SHA256 checksum of the package archive file. The sum value should be 64 characters

long (that is, just the SHA256 value, no file name or any other markers), be calculated in the

binary mode, and use lower-case letters.

6.4 Package List Manifest for dir Repositories

The package list manifest (the packages.manifest file found in the dir repository root

directory) describes the list of packages available in the repository. It is a (potentially empty)

sequence of manifests with the following synopsis:

location: <path>
[fragment]: <string>

The detailed description of each value follows in the subsequent sections. The fragment
value can only be present in a merged packages.manifest file for a multi-fragment

repository.

As an example, if our repository contained the src/ subdirectory that in turn contained the

libfoo and foo packages, then the corresponding packages.manifest file could look

like this:

: 1
location: src/libfoo/
:
location: src/foo/

6.4.1 location

location: <path>

The path to the package directory relative to the repository root. It should be in the POSIX

representation.

45Revision 0.17, April 2024 The build2 Package Manager

6.4 Package List Manifest for dir Repositories

6.4.2 fragment

[fragment]: <string>

The repository fragment id this package belongs to.

6.5 Repository Manifest

The repository manifest (only used as part of the repository manifest list described below)

describes a pkg, dir, or git repository. The manifest synopsis is presented next followed

by the detailed description of each value in subsequent sections.

[location]: <uri>
[type]: pkg|dir|git
[role]: base|prerequisite|complement
[trust]: <fingerprint>
[url]: <url>
[email]: <email> [; <comment>]
[summary]: <text>
[description]: <text>
[certificate]: <pem>
[fragment]: <string>

See also the Repository Chaining documentation for further information @@ TODO.

6.5.1 location

[location]: <uri>

The repository location. The location can and must only be omitted for the base repository.

Since we got hold of its manifest, then we presumably already know the location of the base

repository. If the location is a relative path, then it is treated as relative to the base repository

location.

For the git repository type the relative location does not inherit the URL fragment from the

base repository. Note also that the remote git repository locations normally have the .git

extension that is stripped when a repository is cloned locally. To make the relative locations

usable in both contexts, the .git extension should be ignored if the local prerequisite reposi

tory with the extension does not exist while the one without the extension does.

While POSIX systems normally only support POSIX paths (that is, forward slashes only),

Windows is generally able to handle both slash types. As a result, it is recommended that

POSIX paths are always used in the location values, except, perhaps, if the repository is

explicitly Windows-only by, for example, having a location that is an absolute Windows path

with the drive letter. The bpkg package manager will always try to represent the location as a

POSIX path and only fallback to the native representation if that is not possible (for example,

there is a drive letter in the path).

Revision 0.17, April 202446 The build2 Package Manager

6.5 Repository Manifest

6.5.2 type

[type]: pkg|dir|git

The repository type. The type must be omitted for the base repository. If the type is omitted

for a prerequisite/complement repository, then it is guessed from its location value as

described in bpkg-rep-add(1).

6.5.3 role

[role]: base|prerequisite|complement

The repository role. The role value can be omitted for the base repository only.

6.5.4 trust

[trust]: <fingerprint>

The repository fingerprint to trust. The trust value can only be specified for prerequisite

and complement repositories and only for repository types that support authentication

(currently only pkg). The fingerprint value should be an SHA256 repository fingerprint

represented as 32 colon-separated hex digit pairs. The repository in question is only trusted

for use as a prerequisite or complement of this repository. If it is also used by other reposito

ries or is added to the configuration by the user, then such uses cases are authenticated inde

pendently.

6.5.5 url

[url]: <url>

The repository’s web interface (brep) URL. It can only be specified for the base repository

(the web interface URLs for prerequisite/complement repositories can be extracted from their

respective manifests).

For example, given the following url value:

url: https://example.org/hello/

The package details page for libfoo located in this repository will be

https://example.org/hello/libfoo.

The web interface URL can also be specified as relative to the repository location (the loca
tion value). In this case url should start with two path components each being either . or

... If the first component is .., then the www, pkg or bpkg domain component, if any, is

removed from the location URL host, just like when deriving the repository name.

Similarly, if the second component is .., then the pkg or bpkg path component, if any, is

removed from the location URL path, again, just like when deriving the repository name.

47Revision 0.17, April 2024 The build2 Package Manager

6.5.2 type

Finally, the version component is removed from the location URL path, the rest (after the

two ./.. components) of the url value is appended to it, and the resulting path is normal

ized with all remaining .. and . applied normally.

For example, assuming repository location is:

https://pkg.example.org/test/pkg/1/hello/stable

The following listing shows some of the possible combinations (the <> marker is used to

highlight the changes):

./. -> https://pkg.example.org/test/pkg/hello/stable

../. -> https://< >example.org/test/pkg/hello/stable

./.. -> https://pkg.example.org/test/< >hello/stable

../.. -> https://< >example.org/test/< >hello/stable

././.. -> https://pkg.example.org/test/pkg/hello< >

../../../.. -> https://< >example.org/test< >

The rationale for the relative web interface URLs is to allow deployment of the same reposi

tory to slightly different configuration, for example, during development, testing, and public

use. For instance, for development we may use the https://example.org/pkg/ setup

while in production it becomes https://pkg.example.org/. By specifying the web

interface location as, say, ../., we can run the web interface at these respective locations

using a single repository manifest.

6.5.6 email

[email]: <email> [; <comment>]

The repository email address. It must and can only be specified for the base repository. The

email address is displayed by the web interface (brep) in the repository about page and could

be used to contact the maintainers about issues with the repository.

6.5.7 summary

[summary]: <text>

The short description of the repository. It must and can only be specified for the base reposi

tory.

6.5.8 description

[description]: <text>

The detailed description of the repository. It can only be specified for the base repository.

In the web interface (brep) the description is formatted into one or more paragraphs using

blank lines as paragraph separators. Specifically, it is not represented as <pre> so any kind

of additional plain text formatting (for example, lists) will be lost and should not be used in

the description.

Revision 0.17, April 202448 The build2 Package Manager

6.5.6 email

6.5.9 certificate

[certificate]: <pem>

The X.509 certificate for the repository. It should be in the PEM format and can only be spec

ified for the base repository. Currently only used for the pkg repository type.

The certificate should contain the CN and O components in the subject as well as the email:

component in the subject alternative names. The CN component should start with name: and

continue with the repository name prefix/wildcard (without trailing slash) that will be used to

verify the repository name(s) that are authenticated with this certificate. See bpkg-reposi

tory-signing(1) for details.

If this value is present then the packages.manifest file must be signed with the corre

sponding private key and the signature saved in the signature.manifest file. See

Signature Manifest for details.

6.5.10 fragment

[fragment]: <string>

The repository fragment id this repository belongs to.

6.6 Repository List Manifest

@@ TODO See the Repository Chaining document for more information on the terminology

and semantics.

The repository list manifest (the repositories.manifest file found in the repository

root directory) describes the repository. It starts with an optional header manifest optionally

followed by a sequence of repository manifests consisting of the base repository manifest

(that is, the manifest for the repository that is being described) as well as manifests for its

prerequisite and complement repositories. The individual repository manifests can appear in

any order and the base repository manifest can be omitted.

The fragment values can only be present in a merged repositories.manifest file

for a multi-fragment repository.

As an example, a repository manifest list for the math/testing repository could look like

this:

math/testing
#
: 1
min-bpkg-version: 0.14.0
:
email: math-pkg@example.org
summary: Math package repository
:
role: complement

49Revision 0.17, April 2024 The build2 Package Manager

6.6 Repository List Manifest

location: ../stable
:
role: prerequiste
location: https://pkg.example.org/1/misc/testing

Here the first manifest describes the base repository itself, the second manifest – a comple

ment repository, and the third manifest – a prerequisite repository. Note that the complement

repository’s location is specified as a relative path. For example, if the base repository loca

tion were:

https://pkg.example.org/1/math/testing

Then the completement’s location would be:

https://pkg.example.org/1/math/stable

The header manifest synopsis is presented next followed by the detailed description of each

value in subsequent sections.

[min-bpkg-version]: <ver>
[compression]: <compressions>

6.6.1 min-bpkg-version

[min-bpkg-version]: <ver>

The earliest version of bpkg that is compatible with this repository. Note that if specified, it

must be the first value in the header.

6.6.2 compression

[compression]: <compressions>

<compressions> = <compression> [<compression>]*

Available compressed variants of the packages.manifest file. The format is a

space-separated list of the compression methods. The none method means no compression.

Absent compression value is equivalent to specifying it with the none value.

6.7 Signature Manifest for pkg Repositories

The signature manifest (the signature.manifest file found in the pkg repository root

directory) contains the signature of the repository’s packages.manifest file. In order to

detect the situation where the downloaded signature.manifest and pack
ages.manifest files belong to different updates, the manifest contains both the checksum

and the signature (which is the encrypted checksum). We cannot rely on just the signature

since a mismatch could mean either a split update or tampering. The manifest synopsis is

presented next followed by the detailed description of each value in subsequent sections.

Revision 0.17, April 202450 The build2 Package Manager

6.7 Signature Manifest for pkg Repositories

sha256sum: <sum>
signature: <sig>

6.7.1 sha256sum

sha256sum: <sum>

The SHA256 checksum of the packages.manifest file. The sum value should be 64

characters long (that is, just the SHA256 value, no file name or any other markers), be calcu

lated in the binary mode, and use lower-case letters.

6.7.2 signature

signature: <sig>

The signature of the packages.manifest file. It should be calculated by encrypting the

above sha256sum value with the repository certificate’s private key and then

base64-encoding the result.

7 Binary Distribution Package Mapping

7.1 Debian Package Mapping

This section describes the distribution package mapping for Debian and alike (Ubuntu, etc).

7.1.1 Debian Package Mapping for Consumption

A library in Debian is normally split up into several packages: the shared library package

(e.g., libfoo1 where 1 is the ABI version), the development files package (e.g.,

libfoo-dev), the documentation files package (e.g., libfoo-doc), the debug symbols

package (e.g., libfoo1-dbg), and the architecture-independent files (e.g.,

libfoo1-common). All the packages except -dev are optional and there is quite a bit of

variability. Here are a few examples:

libsqlite3-0 libsqlite3-dev

libssl1.1 libssl-dev libssl-doc
libssl3 libssl-dev libssl-doc

libcurl4 libcurl4-openssl-dev libcurl4-doc
libcurl3-gnutls libcurl4-gnutls-dev libcurl4-doc

Note that while most library package names in Debian start with lib (per the policy), there

are exceptions (e.g., zlib1g zlib1g-dev). The header-only library package names may

or may not start with lib and end with -dev (e.g., libeigen3-dev, rapidjson-dev,

catch2). Also note that manual -dbg packages are obsolete in favor of automatic

-dbgsym packages from Debian 9.

51Revision 0.17, April 2024 The build2 Package Manager

7 Binary Distribution Package Mapping

For executable packages there is normally no -dev packages but -dbg, -doc, and

-common are plausible.

Based on that, our approach when trying to automatically map a bpkg library package name

to Debian package names is to go for the -dev package first and figure out the shared library

package from that based on the fact that the -dev package should have the == dependency

on the shared library package with the same version and its name should normally start with

the -dev package’s stem.

The format of the debian-name (or alike) manifest value is a comma-separated list of one

or more package groups:

<package-group> [, <package-group>...]

Where each <package-group> is the space-separated list of one or more package names:

<package-name> [<package-name>...]

All the packages in the group should be "package components" (for the lack of a better term)

of the same "logical package", such as -dev, -doc, -common packages. They normally

have the same version.

The first group is called the main group and the first package in the group is called the main

package. Note that all the groups are consumed (installed) but only the main group is

produced (packaged).

We allow/recommend specifying the -dev package instead of the main package for libraries

(see type for details), seeing that we are capable of detecting the main package automatically

(see above). If the library name happens to end with -dev (which poses an ambiguity), then

the -dev package should be specified explicitly as the second package to disambiguate this

situation.

The Debian package version has the [<epoch>:]<upstream>[-<revision>] form

(see deb-version(5) for details). If no explicit mapping to the bpkg version is specified

with the debian-to-downstream-version (or alike) manifest values or none match,

then we fallback to using the <upstream> part as the bpkg version. If explicit mapping is

specified, then we match it against the [<epoch>:]<upstream> parts ignoring <revi
sion>.

7.1.2 Debian Package Mapping for Production

The same debian-name (or alike) manifest values as used for consumption are also used to

derive the package names for production except here we have the option to specify alternative

non-native package names using the special debian_0-name (or alike) value. If only the

-dev package is specified, then the main package name is derived from that by removing the

-dev suffix. Note that regardless of whether the main package name is specified or not, the

bpkg-pkg-bindist(1) command may omit generating the main package for a binless

library.

Revision 0.17, April 202452 The build2 Package Manager

7.1.2 Debian Package Mapping for Production

The generated binary package version can be specified with the debian-version (or

alike) manifest value. If it’s not specified, then the upstream-version is used if speci

fied. Otherwise, the bpkg version is translated to the Debian version as described next.

To recap, a Debian package version has the following form:

[<epoch>:]<upstream>[-<revision>]

For details on the ordering semantics, see the Version control file field documentation

in the Debian Policy Manual. While overall unsurprising, one notable exception is ~, which

sorts before anything else and is commonly used for upstream pre-releases. For example,

1.0~beta1~svn1245 sorts earlier than 1.0~beta1, which sorts earlier than 1.0.

There are also various special version conventions (such as all the revision components in

1.4-5+deb10u1~bpo9u1) but they all appear to express relationships between native

packages and/or their upstream and thus do not apply to our case.

To recap, the bpkg version has the following form (see Package Version for details):

[+<epoch>-]<upstream>[-<prerel>][+<revision>]

Let’s start with the case where neither distribution (debian-version) nor upstream

version (upstream-version) is specified and we need to derive everything from the

bpkg version (what follows is as much description as rationale).

<epoch>

On one hand, if we keep our (as in, bpkg) epoch, it won’t necessarily match Debian’s

native package epoch. But on the other it will allow our binary packages from different

epochs to co-exist. Seeing that this can be easily overridden with a custom distribution

version (see below), we keep it.

Note that while the Debian start/default epoch is 0, ours is 1 (we use the 0 epoch for stub

packages). So we shift this value range.

<upstream>[-<prerel>]

Our upstream version maps naturally to Debian’s. That is, our upstream version

format/semantics is a subset of Debian’s.

If this is a pre-release, then we could fail (that is, don’t allow pre-releases) but then we

won’t be able to test on pre-release packages, for example, to make sure the name

mapping is correct. Plus sometimes it’s useful to publish pre-releases. We could ignore

it, but then such packages will be indistinguishable from each other and the final release,

which is not ideal. On the other hand, Debian has the mechanism (~) which is essentially

meant for this, so we use it. We will use <prerel> as is since its format is the same as

upstream and thus should map naturally.

<revision>

Similar to epoch, our revision won’t necessarily match Debian’s native package revision.

But on the other hand it will allow us to establish a correspondence between source and

53Revision 0.17, April 2024 The build2 Package Manager

7.1.2 Debian Package Mapping for Production

binary packages. Plus, upgrades between binary package revisions will be handled natu

rally. Seeing that we allow overriding the revision with a custom distribution version (see

below), we keep it.

Note also that both Debian and our revision start/default is 0. However, it is Debian’s

convention to start revision from 1. But it doesn’t seem worth it for us to do any shifting

here and so we will use our revision as is.

Another related question is whether we should also include some metadata that identifies

the distribution and its version that this package is for. The strongest precedent here is

probably Ubuntu’s PPA. While there doesn’t appear to be a consistent approach, one can

often see versions like these:

2.1.0-1~ppa0~ubuntu14.04.1,
1.4-5-1.2.1~ubuntu20.04.1~ppa1
22.12.2-0ubuntu1~ubuntu23.04~ppa1

Seeing that this is a non-sortable component (what in semver would be called "build

metadata"), using ~ is probably not the worst choice.

So we follow this lead and add the ~<ID><VERSION_ID> os-release(5) compo

nent to revision. Note that this also means we will have to make the 0 revision explicit.

For example:

1.2.3-1~debian10
1.2.3-0~ubuntu20.04

The next case to consider is when we have the upstream version (upstream-version

manifest value). After some rumination it feels correct to use it in place of the

<epoch>-<upstream> components in the above mapping (upstream version itself cannot

have epoch). In other words, we will add the pre-release and revision components from the

bpkg version. If this is not the desired semantics, then it can always be overridden with the

distribution version (see below).

Finally, we have the distribution version. The Debian <epoch> and <upstream> compo

nents are straightforward: they should be specified by the distribution version as required.

This leaves pre-release and revision. It feels like in most cases we would want these copied

over from the bpkg version automatically – it’s too tedious and error-prone to maintain them

manually. However, we want the user to have the full override ability. So instead, if empty

revision is specified, as in 1.2.3-, then we automatically add the bpkg revision. Similarly,

if empty pre-release is specified, as in 1.2.3~, then we add the bpkg pre-release. To add

both automatically, we would specify 1.2.3~- (other combinations are 1.2.3~b.1- and

1.2.3~-1).

Note also that per the Debian version specification, if upstream contains : and/or -, then

epoch and/or revision must be specified explicitly, respectively. Note that the bpkg upstream

version may not contain either.

Revision 0.17, April 202454 The build2 Package Manager

7.1.2 Debian Package Mapping for Production

7.2 Fedora Package Mapping

This section describes the distribution package mapping for Fedora and alike (Red Hat Enter

prise Linux, Centos, etc).

7.2.1 Fedora Package Mapping for Consumption

A library in Fedora is normally split up into several packages: the shared library package (e.g.,

libfoo), the development files package (e.g., libfoo-devel), the static library package

(e.g., libfoo-static; may also be placed into the -devel package), the documentation

files package (e.g., libfoo-doc), the debug symbols and source files packages (e.g.,

libfoo-debuginfo and libfoo-debugsource), and the common or architec

ture-independent files (e.g., libfoo-common). All the packages except -devel are

optional and there is quite a bit of variability. In particular, the lib prefix in libfoo is not a

requirement (unlike in Debian) and is normally present only if upstream name has it (see

some examples below).

For application packages there is normally no -devel packages but -debug*, -doc, and

-common are plausible.

For mixed packages which include both applications and libraries, the shared library package

normally has the -libs suffix (e.g., foo-libs).

A package name may also include an upstream version based suffix if multiple versions of the

package can be installed simultaneously (e.g., libfoo1.1 libfoo1.1-devel,

libfoo2 libfoo2-devel).

Terminology-wise, the term "base package" (sometime also "main package") normally refers

to either the application or shared library package (as decided by the package maintainer in

the spec file) with the suffixed packages (-devel, -doc, etc) called "subpackages".

Here are a few examples:

libpq libpq-devel

zlib zlib-devel zlib-static

catch-devel

eigen3-devel eigen3-doc

xerces-c xerces-c-devel xerces-c-doc

libsigc++20 libsigc++20-devel libsigc++20-doc
libsigc++30 libsigc++30-devel libsigc++30-doc

icu libicu libicu-devel libicu-doc

openssl openssl-libs openssl-devel openssl-static
openssl1.1 openssl1.1-devel

curl libcurl libcurl-devel

55Revision 0.17, April 2024 The build2 Package Manager

7.2 Fedora Package Mapping

sqlite sqlite-libs sqlite-devel sqlite-doc

community-mysql community-mysql-libs community-mysql-devel
community-mysql-common community-mysql-server

ncurses ncurses-libs ncurses-c++-libs ncurses-devel ncurses-static

keyutils keyutils-libs keyutils-libs-devel

Note that while we support arbitrary -debug* sub-package names for consumption, we only

generate <main-package>-debug*.

Based on that, our approach when trying to automatically map a bpkg library package name

to Fedora package names is to go for the -devel package first and figure out the shared

library package from that based on the fact that the -devel package should have the ==

dependency on the shared library package with the same version and its name should

normally start with the -devel package’s stem and potentially end with the -libs suffix. If

failed to find the -devel package, we re-try but now using the bpkg project name instead of

the package name (see, for example, openssl, sqlite).

The format of the fedora-name (or alike) manifest value value is a comma-separated list of

one or more package groups:

<package-group> [, <package-group>...]

Where each <package-group> is the space-separated list of one or more package names:

<package-name> [<package-name>...]

All the packages in the group should belong to the same "logical package", such as -devel,

-doc, -common packages. They normally have the same version.

The first group is called the main group and the first package in the group is called the main

package. Note that all the groups are consumed (installed) but only the main group is

produced (packaged).

(Note that above we use the term "logical package" instead of "base package" since the main

package may not be the base package, for example being the -libs subpackage.)

We allow/recommend specifying the -devel package instead of the main package for

libraries (see type for details), seeing that we are capable of detecting the main package

automatically (see above). If the library name happens to end with -devel (which poses an

ambiguity), then the -devel package should be specified explicitly as the second package to

disambiguate this situation.

The Fedora package version has the [<epoch>:]<version>-<release> form (see

Fedora Package Versioning Guidelines for details). If no explicit mapping to the bpkg
version is specified with the fedora-to-downstream-version (or alike) manifest

values or none match, then we fallback to using the <version> part as the bpkg version. If

explicit mapping is specified, then we match it against the [<epoch>:]<version> parts

Revision 0.17, April 202456 The build2 Package Manager

7.2.1 Fedora Package Mapping for Consumption

ignoring <release>.

7.2.2 Fedora Package Mapping for Production

The same fedora-name (or alike) manifest values as used for consumption are also used to

derive the package names for production except here we have the option to specify alternative

non-native package names using the special fedora_0-name (or alike) value. If only the

-devel package is specified, then the main package name is derived from that by removing

the -devel suffix. Note that regardless of whether the main package name is specified or

not, the bpkg-pkg-bindist(1) command may omit generating the main package for a

binless library.

The generated binary package version can be specified with the fedora-version (or

alike) manifest value. If it’s not specified, then the upstream-version is used if speci

fied. Otherwise, the bpkg version is translated to the Fedora version as described next.

To recap, a Fedora package version has the following form:

[<epoch>:]<version>-<release>

Where <release> has the following form:

<release-number>[.<distribution-tag>]

For details on the ordering semantics, see the Fedora Versioning Guidelines. While overall

unsurprising, the only notable exceptions are ~, which sorts before anything else and is

commonly used for upstream pre-releases, and ^, which sorts after anything else and is

supposedly used for upstream post-release snapshots. For example,

0.1.0~alpha.1-1.fc35 sorts earlier than 0.1.0-1.fc35.

To recap, the bpkg version has the following form (see Package Version for details):

[+<epoch>-]<upstream>[-<prerel>][+<revision>]

Let’s start with the case where neither distribution (fedora-version) nor upstream

version (upstream-version) is specified and we need to derive everything from the

bpkg version (what follows is as much description as rationale).

<epoch>

On one hand, if we keep our (as in, bpkg) epoch, it won’t necessarily match Fedora’s

native package epoch. But on the other it will allow our binary packages from different

epochs to co-exist. Seeing that this can be easily overridden with a custom distribution

version (see below), we keep it.

Note that while the Fedora start/default epoch is 0, ours is 1 (we use the 0 epoch for stub

packages). So we shift this value range.

57Revision 0.17, April 2024 The build2 Package Manager

7.2.2 Fedora Package Mapping for Production

<upstream>[-<prerel>]

Our upstream version maps naturally to Fedora’s <version>. That is, our upstream

version format/semantics is a subset of Fedora’s <version>.

If this is a pre-release, then we could fail (that is, don’t allow pre-releases) but then we

won’t be able to test on pre-release packages, for example, to make sure the name

mapping is correct. Plus sometimes it’s useful to publish pre-releases. We could ignore

it, but then such packages will be indistinguishable from each other and the final release,

which is not ideal. On the other hand, Fedora has the mechanism (~) which is essentially

meant for this, so we use it. We will use <prerel> as is since its format is the same as

<upstream> and thus should map naturally.

<revision>

Similar to epoch, our revision won’t necessarily match Fedora’s native package release

number. But on the other hand it will allow us to establish a correspondence between

source and binary packages. Plus, upgrades between binary package releases will be

handled naturally. Also note that the revision is mandatory in Fedora. Seeing that we

allow overriding the releases with a custom distribution version (see below), we use it.

Note that the Fedora start release number is 1 and our revision is 0. So we shift this value

range.

Also we automatically add the trailing distribution tag (.fc35, .el8, etc) to the Fedora

release. The tag is deduced automatically unless overridden on the command line (see

bpkg-pkg-bindist(1) command for details).

The next case to consider is when we have the upstream version (upstream-version

manifest value). After some rumination it feels correct to use it in place of the

<epoch>-<upstream> components in the above mapping (upstream version itself cannot

have epoch). In other words, we will add the pre-release and revision components from the

bpkg version. If this is not the desired semantics, then it can always be overridden with the

distribution version (see below).

Finally, we have the distribution version. The Fedora <epoch> and <version> compo

nents are straightforward: they should be specified by the distribution version as required.

This leaves pre-release and release. It feels like in most cases we would want these copied

over from the bpkg version automatically – it’s too tedious and error-prone to maintain them

manually. However, we want the user to have the full override ability. So instead, if empty

release is specified, as in 1.2.3-, then we automatically add the bpkg revision. Similarly, if

empty pre-release is specified, as in 1.2.3~, then we add the bpkg pre-release. To add both

automatically, we would specify 1.2.3~- (other combinations are 1.2.3~b.1- and

1.2.3~-1). If specified, the release must not contain the distribution tag, since it is deduced

automatically unless overridden on the command line (see bpkg-pkg-bindist(1)

command for details). Also, since the release component is mandatory in Fedora, if it is

omitted together with the separating dash we will add the release 1 automatically.

Revision 0.17, April 202458 The build2 Package Manager

7.2.2 Fedora Package Mapping for Production

Note also that per the RPM spec file format documentation neither version nor release compo

nents may contain : or -. Note that the bpkg upstream version may not contain either.

59Revision 0.17, April 2024 The build2 Package Manager

7.2.2 Fedora Package Mapping for Production

	Preface
	1 Package Name
	2 Package Version
	3 Package Version Constraint
	4 Package Build System Skeleton
	5 Dependency Configuration Negotiation
	5.1 Prefer X but Accept X or Y
	5.2 Use If Enabled
	5.3 Disable If Enabled by Default

	6 Manifests
	6.1 Manifest Format
	6.2 Package Manifest
	6.2.1 name
	6.2.2 version
	6.2.3 type, language
	6.2.4 project
	6.2.5 priority
	6.2.6 summary
	6.2.7 license
	6.2.8 topics
	6.2.9 keywords
	6.2.10 description, package-description
	6.2.11 changes
	6.2.12 url
	6.2.13 doc-url
	6.2.14 src-url
	6.2.15 package-url
	6.2.16 email
	6.2.17 package-email
	6.2.18 build-email
	6.2.19 build-warning-email
	6.2.20 build-error-email
	6.2.21 depends
	6.2.22 requires
	6.2.23 tests, examples, benchmarks
	6.2.24 builds
	6.2.25 build-{include, exclude}
	6.2.26 build-auxiliary
	6.2.27 build-bot
	6.2.28 *-build-config
	6.2.29 build-file
	6.2.30 *-{name, version, to-downstream-version}

	6.3 Package List Manifest for pkg Repositories
	6.3.1 sha256sum (list manifest)
	6.3.2 location (package manifest)
	6.3.3 sha256sum (package manifest)

	6.4 Package List Manifest for dir Repositories
	6.4.1 location
	6.4.2 fragment

	6.5 Repository Manifest
	6.5.1 location
	6.5.2 type
	6.5.3 role
	6.5.4 trust
	6.5.5 url
	6.5.6 email
	6.5.7 summary
	6.5.8 description
	6.5.9 certificate
	6.5.10 fragment

	6.6 Repository List Manifest
	6.6.1 min-bpkg-version
	6.6.2 compression

	6.7 Signature Manifest for pkg Repositories
	6.7.1 sha256sum
	6.7.2 signature

	7 Binary Distribution Package Mapping
	7.1 Debian Package Mapping
	7.1.1 Debian Package Mapping for Consumption
	7.1.2 Debian Package Mapping for Production

	7.2 Fedora Package Mapping
	7.2.1 Fedora Package Mapping for Consumption
	7.2.2 Fedora Package Mapping for Production

