
The build2 Packaging Guide

Copyright © 2014-2025 the build2 authors.

Permission is granted to copy, distribute and/or modify this document under the terms of the

MIT License.

Revision 0.18, February 2025

This revision of the document describes the build2 toolchain 0.18.x series.

Table of Contents

.................. 1Preface

................. 11 Introduction

............... 21.1 Terminology

............... 32 Common Guidelines

............ 32.1 Setup the package repository

....... 32.1.1 Check if package repository already exists

... 42.1.2 Use upstream repository name as package repository name

...... 42.1.3 Create package repository in personal workspace

...... 52.1.4 Initialize package repository with bdep new

....... 72.1.5 Add upstream repository as git submodule

...... 82.2 Create package and generate buildfile templates

.......... 82.2.1 Decide on the package name

....... 112.2.2 Decide on the package source code layout

..... 142.2.3 Craft bdep new command line to create package

.... 182.2.4 Review and test auto-generated buildfile templates

............ 202.2.5 Create final package

........... 212.2.6 Adjust package version

...... 222.3 Fill package with source code and add dependencies

....... 232.3.1 Initialize package in build configurations

............ 242.3.2 Add dependencies

.......... 262.3.3 Fill with upstream source code

........ 282.4 Adjust project-wide and source buildfiles

..... 292.4.1 Adjust project-wide build system files in build/

....... 302.4.2 Adjust source subdirectory buildfiles

.......... 312.4.3 Adjust header buildfile

........ 322.4.4 Adjust source buildfile: overview

........ 332.4.5 Adjust source buildfile: cleanup

....... 352.4.6 Adjust source buildfile: dependencies

....... 362.4.7 Adjust source buildfile: public headers

..... 362.4.8 Adjust source buildfile: sources, private headers

..... 382.4.9 Adjust source buildfile: build and export options

...... 412.4.10 Adjust source buildfile: symbol exporting

..... 432.4.11 Adjust source buildfile: shared library version

....... 432.4.12 Adjust source buildfile: executables

..... 452.4.13 Adjust source buildfile: extra requirements

............ 452.4.14 Test library build

.............. 462.5 Make smoke test

... 472.5.1 Adjust project-wide build system files in tests/build/

....... 472.5.2 Convert generated test to library smoke test

.......... 482.5.3 Make smoke test: executables

.............. 492.5.4 Test locally

........... 492.5.5 Test locally: installation

........... 502.5.6 Test locally: distribution

........... 512.5.7 Commit and test with CI

iRevision 0.18, February 2025 The build2 Packaging Guide

Table of Contents

.......... 512.6 Replace smoke test with upstream tests

......... 522.6.1 Understand how upstream tests work

......... 542.6.2 Convert smoke test to upstream tests

............... 542.6.3 Test locally

............ 552.6.4 Commit and test with CI

......... 552.7 Add upstream examples, benchmarks, if any

........ 552.8 Adjust root files (buildfile, manifest, etc)

............ 552.8.1 Adjust root buildfile

....... 562.8.2 Adjust root buildfile: other subdirectories

........ 582.8.3 Adjust root buildfile: commit and test

............. 592.8.4 Adjust manifest

........... 602.8.5 Adjust manifest: summary

........... 612.8.6 Adjust manifest: license

......... 612.8.7 Adjust manifest: commit and test

.......... 612.8.8 Adjust PACKAGE-README.md

.......... 622.9 Adjust package repository README.md

.............. 632.10 Release and publish

........... 642.10.1 Transfer package repository

............. 642.10.2 Release final version

............ 652.10.3 Publish released version

............ 662.11 Package version management

.............. 672.11.1 New revision

.............. 682.11.2 New version

......... 692.11.3 New version: create new work branch

.......... 692.11.4 New version: open new version

....... 692.11.5 New version: update upstream submodule

......... 692.11.6 New version: review upstream changes

........... 702.11.7 New version: layout changes

......... 702.11.8 New version: new/old dependencies

.......... 702.11.9 New version: new/old source files

......... 712.11.10 New version: changes to build system

...... 712.11.11 New version: other new/old files/subdirectories

... 712.11.12 New version: review manifest and PACKAGE-README.md

....... 712.11.13 New version: review repository README.md

....... 712.11.14 New version: review/fix accumulated issues

......... 712.11.15 New version: test locally and with CI

........ 722.11.16 New version: merge, release, and publish

........ 722.11.17 New version/revision in old release series

................. 723 What Not to Do

...... 733.1 Don’t write buildfiles from scratch, use bdep-new

....... 733.2 Avoid fixing upstream issues in the build2 package

......... 733.3 Avoid changing upstream source code layout

....... 733.4 Don’t make library header-only if it can be compiled

............. 743.5 Don’t bundle dependencies

....... 753.6 Don’t build your main targets in the root buildfile

......... 763.7 Don’t make extensive changes in a revision

Revision 0.18, February 2025ii The build2 Packaging Guide

Table of Contents

................ 774 Packaging HOWTO

.......... 774.1 How do I patch upstream source code?

........ 774.1.1 Modifying upstream source code manually

....... 784.1.2 Modifying upstream source code during build

.... 794.1.3 Modifying upstream source code with C/C++ preprocessor

........ 804.2 How do I deal with bad header inclusion practice?

....... 824.3 How do I handle extra header installation subdirectory?

........ 834.4 How do I handle headers without an extension?

........ 844.5 How do I expose extra debug macros of a library?

......... 854.6 How do I deal with tests that don’t terminate?

...... 854.7 How do I deal with compiler/linker running out of RAM?

................. 865 Packaging FAQ

............... 865.1 Publishing FAQ

...... 865.1.1 Why is my package in alpha rather than stable?

..... 865.1.2 Where to publish if package requires staged toolchain?

.... 875.1.3 Why "project owner authentication failed" while publishing?

................. 886 Package Review

........... 916.1 Reviewing initial package submission

............. 916.1.1 Create review issue

............ 916.1.2 Create review pull request

........... 926.1.3 Go through review checklist

........... 936.1.4 Add review outcome comment

............ 946.1.5 Finish successful review

.......... 956.1.6 Continue with unsuccessful review

........... 956.1.7 Send review notification email

........... 966.2 Reviewing new version submission

.......... 966.2.1 Determine the extent of changes

............. 976.2.2 Create review issue

............ 986.2.3 Finish successful review

.......... 986.2.4 Continue with unsuccessful review

........... 996.3 Reviewing new revision submission

iiiRevision 0.18, February 2025 The build2 Packaging Guide

Table of Contents

Preface

This document provides guidelines for converting third-party C/C++ projects to the build2
build system and making them available as packages from cppget.org, the build2 commu

nity’s central package repository. For additional information, including documentation for

individual build2 toolchain components, man pages, HOWTOs, etc., refer to the project

Documentation page.

1 Introduction

The aim of this guide is to ease the conversion of third-party C/C++ projects to the build2
build system and publishing them to the cppget.org package repository by codifying the best

practices and techniques. By following the presented guidelines you will also make it easier

for others to review your work and help with ongoing maintenance.

A build2-based project can only consume packages that use the build2 build system

(with the exception of system-installed packages). In other words, there is no support for

"wrapping" or otherwise adapting third-party projects’ existing build systems. While replac

ing the build system unquestionably requires more work upfront, the build2 project’s expe

rience is that the long-term benefits of this effort are well justified (see How does build2
compare to other package managers? for details).

The primary focus of this guide is existing C/C++ projects that use a different build system

and that are maintained by a third-party, which we will refer to as upstream. Unless upstream

is willing to incorporate support for build2 directly into their repository, such projects are

normally packaged for build2 in a separate git repository under the

github.com/build2-packaging organization. Note, however, that many of the presented guide

lines are also applicable when converting your own projects (that is, where you are the

upstream) as well as projects that use languages other than C or C++.

Most C/C++ packages that are published to cppget.org are either libraries or executables

(projects that provide both are normally split into several packages) with libraries being in the

strong majority. Libraries are also generally more difficult to build correctly. As a result, this

guide uses libraries as a baseline. In most cases, a library-specific step is easily distinguished

as such and can be skipped when dealing with executables. And in cases where a more

nuanced change is required, a note will be provided.

At the high-level, packaging a third-party project involves the following steps:

1. Create the git repository and import upstream source code.

2. Generate buildfile templates that match upstream layout.

3. Tweak the generated buildfiles to match upstream build.

4. Test locally and using the build2 CI service.

5. Release and publish the package to cppget.org.

1Revision 0.18, February 2025 The build2 Packaging Guide

Preface

https://cppget.org/
https://build2.org/doc.xhtml
https://cppget.org/
https://build2.org/faq.xhtml#why-syspkg
https://build2.org/faq.xhtml#why-package-managers
https://build2.org/faq.xhtml#why-package-managers
https://github.com/build2-packaging
https://cppget.org/
https://ci.cppget.org/
https://cppget.org/

Once this process is completed and the package is published, new releases normally require a

small amount of work provided there are no drastic changes in the upstream layout or build.

The sequence of steps for a new release would typical look like this:

1. Add new and/or remove old upstream source code, if any.

2. Tweak buildfiles to match changes to upstream build, if any.

3. Test locally and using the build2 CI service.

4. Release and publish the package to cppget.org.

While packaging a simple library or executable is relatively straightforward, the C and C++

languages and their ecosystems are infamous for a large amount of variability in the plat

forms, compilers, source code layouts, and build systems used. This leads to what looks like

an endless list of special considerations that are only applicable in certain, more complex

cases.

As result, the presented guidelines are divided into four chapters: Common Guidelines cover

steps that are applicable to most packaging efforts. As mentioned earlier, these steps will

assume packaging a library but they should be easy to adapt to executables. This chapter is

followed by What Not to Do which covers the common packaging mistakes and omissions.

These are unfortunately relatively common because experience with other build systems often

does not translate directly to build2 and some techniques (such as header-only libraries) are

discouraged. The last two chapters are HOWTO and FAQ. The former covers the

above-mentioned long list of special considerations that are only applicable in certain cases

while the latter answer frequent packaging-related questions.

Besides the presented guidelines, you may also find the existing packages found in

github.com/build2-packaging a good source of example material. The repositories pinned to

the front page are the recommended starting point.

This guide assumes familiarity with the build2 toolchain. At the minimum you should have

read through The build2 Toolchain Introduction and the Introduction chapter in the build

system manual. Ideally, you should also have some experience using build2 in your own

projects.

In this guide we will only show the UNIX version of the commands. In most cases making a

Windows version is a simple matter of adjusting paths and, if used, line continuations. And

where this is not the case a note will be provided showing the equivalent Windows command.

1.1 Terminology

We use the term upstream to refer collectively to the third-party project as well as to its

authors. For example, we may say, "upstream does not use semver" meaning that the

upstream project does not use semver for versioning. Or we may say, "upstream released a

new version" meaning that the upstream project’s authors released a new version.

Revision 0.18, February 20252 The build2 Packaging Guide

1.1 Terminology

https://ci.cppget.org/
https://cppget.org/
https://github.com/build2-packaging

We will often use upstream as a qualifier to refer to a specific part of the upstream project.

Commonly used qualified terms like this include:

upstream repository

The version control (normally git) repository of the third-party project.

upstream source code

The C/C++ source code that constitutes the third-party project.

upstream layout

The directory structure and location of source code in the third-party project.

upstream build system

The equivalents of buildfiles that are used by the third-party project to build its

source code, run tests, etc. For example, if upstream uses CMake, then all the CMake
Lists.txt, *.cmake, etc., files will constitute its build system.

To avoid confusion, in this guide we will always use the term project to refer to upstream and

package to refer to its build2 conversion, even though we would normally call our own

build2-based work a project, not a package (see Project Structure for details on the

build2 terminology in this area). Some commonly used build2-side terms in this guide

include:

package git repository

The git repository that hosts the package of the upstream project.

multi-package repository

Sometimes it makes sense to split the upstream project into multiple build2 packages

(for example, a library and an executable). In this case the package repository structure

must become multi-package.

2 Common Guidelines

This chapter describes the recommended sequence of steps for packaging a third-party project

for build2 with the end-goal of publishing it to the cppget.org package repository.

2.1 Setup the package repository

This section covers the creation of the package git repository and the importation of the

upstream source code.

2.1.1 Check if package repository already exists

Before deciding to package a third-party project you have presumably checked on cppget.org

if someone has already packaged it. There are several other places that make sense to check as

well:

queue.cppget.org contains packages that have been submitted but not yet published.

queue.stage.build2.org contains packages that have been submitted but can only be

published after the next release of the build2 toolchain (see Where to publish if

3Revision 0.18, February 2025 The build2 Packaging Guide

2 Common Guidelines

https://cppget.org/
https://cppget.org/
https://queue.cppget.org/
https://queue.stage.build2.org/

package requires staged toolchain? for background).

github.com/build2-packaging contains all the third-party package repositories. Someone

could already be working on the package but haven’t yet published it.

github.com/build2-packaging/WISHLIST contains as issues projects that people wish

were packaged. These may contain offers to collaborate or announcements of ongoing

work.

In all these cases you should be able to locate the package git repository and/or connect with

others in order to collaborate on the packaging work. If the existing effort looks abandoned

(for example, there hasn’t been any progress for a while and the existing maintainer doesn’t

respond) and you would like to take over the package, get in touch.

2.1.2 Use upstream repository name as package repository name

It is almost always best to use the upstream repository name as the package repository name.

If there is no upstream repository (for example, because the project doesn’t use a version

control system), the name used in the source archive distribution would be the natural fallback

choice.

See Decide on the package name for the complete picture on choosing names.

2.1.3 Create package repository in personal workspace

For a third-party project, the end result that we are aiming for is a package repository under

the github.com/build2-packaging organization.

We require all the third-party projects that are published to cppget.org to be under the

github.com/build2-packaging organization in order to ensure some continuity in case the orig

inal maintainer loses interest, etc. You will still be the owner of the repository and by hosting

your packaging efforts under this organization (as opposed to, say, your personal workspace)

you make it easier for others to discover your work and to contribute to the package mainte

nance.

Note that this requirement does not apply to your own projects (that is, where you are the

upstream) and where the build2 support is part of the upstream repository. Such projects

can live anywhere one can host a git repository. Furthermore, if upstream adds support for

build2 in a package currently hosted under github.com/build2-packaging, then all future

versions should normally be published directly from the upstream repository.

Finally, a note on the use of git and GitHub: if for some reason you are unable to use either,

get in touch to discuss alternatives.

However, the recommended approach is to start with a repository in your personal workspace

and then, when it is ready or in a reasonably complete state, transfer it to

github.com/build2-packaging. This gives you the freedom to make destructive changes to the

repository (including deleting it and starting over) during the initial packaging work. It also

removes the pressure to perform: you can give it a try and if things turn out more difficult than

Revision 0.18, February 20254 The build2 Packaging Guide

2.1.2 Use upstream repository name as package repository name

https://github.com/build2-packaging
https://github.com/build2-packaging/WISHLIST/issues
https://build2.org/community.xhtml#help
https://github.com/build2-packaging
https://cppget.org/
https://github.com/build2-packaging
https://github.com/build2-packaging
https://build2.org/community.xhtml#help
https://github.com/build2-packaging

you expected, you can just drop the repository.

For repositories under github.com/build2-packaging the master/main branch is protected: it

cannot be deleted and its commit history cannot be overwritten with a forced push.

While you can use any name for a repository under the personal workspace, under

github.com/build2-packaging it should follow the Use upstream repository name as package

repository name guideline. In particular, there should be no prefixes like build2- or

suffixes like -package. If the repository under your personal workspace does not follow

this guideline, you will need to rename it before transferring it to the github.com/build2-pack

aging organization.

There is one potential problem with this approach: it is possible that several people will start

working on the same third-party project without being aware of each other’s efforts. If the

project you are packaging is relatively small and you don’t expect it to take more than a day

or two, then this is probably not worth worrying about. For bigger projects, however, it makes

sense to announce your work by creating (or updating) the corresponding issue in

github.com/build2-packaging/WISHLIST.

To put it all together, the recommended sequence of actions for this step:

1. Create a new empty repository under your personal workspace from the GitHub UI.

2. Set the repository description to build2 package for <name>, where <name> is

the third-party project name.

3. Make the repository public (otherwise you won’t be able to CI it).

4. Don’t automatically add any files (README, LICENSE, etc).

5. Clone the empty repository to your machine (using the SSH protocol).

Since this is your personal repository, you can do the initial work directly in master/main
or in a separate branch, it’s up to you.

As a running example, let’s assume we want to package a library called foo whose upstream

repository is at https://github.com/<upstream>/foo.git. We have created its

package repository at https://github.com/<personal>/foo.git (with the

build2 package for foo description) and can now clone it:

$ git clone git@github.com:<personal>/foo.git

2.1.4 Initialize package repository with bdep new

Change to the root directory of the package repository that you have cloned in the previous

step and run (continuing with our foo example):

5Revision 0.18, February 2025 The build2 Packaging Guide

2.1.4 Initialize package repository with bdep new

https://github.com/build2-packaging
https://github.com/build2-packaging
https://github.com/build2-packaging
https://github.com/build2-packaging
https://github.com/build2-packaging/WISHLIST

$ cd foo/ # Change to the package repository root.
$ bdep new --type empty,third-party
$ tree -a .
./
|-- .bdep/
|Â Â ·-- ...
|-- .git/
|Â Â ·-- ...
|-- .gitattributes
|-- .gitignore
|-- README.md
·-- repositories.manifest

We use the special third-party sub-option which is meant for converting third-party

projects to build2. See bdep-new(1) for details.

This command creates a number of files in the root of the repository:

README.md

This is the repository README.md. We will discuss the recommended content for this

file later.

repositories.manifest

This file specifies the repositories from which this project will obtain its dependencies

(see Adding and Removing Dependencies). If the project you are packaging has no

dependencies, then you can safely remove this file (it’s easy to add later if this changes).

And for projects that do have dependencies we will discuss the appropriate changes to

this file later.

.gitattributes and .gitignore

These are the git infrastructure files for the repository. You shouldn’t normally need to

change anything in them at this stage (see the comments inside for details).

Next add and commit these files:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Initialize package repository"

In these guidelines we will be using the package repository setup that is capable of having

multiple packages (referred to as multi-package repository). This is recommended even for

upstream projects that only provides a single package because it gives us the flexibility of

adding new packages at a later stage without having to perform a major restructuring of our

repository.

Note also that upstream providing multiple packages is not the only reason we may end up

having multiple build2 packages. Another common reason is factoring tests into a separate

package due to a dependency on a testing framework (see How do I handle tests that have

extra dependencies? for background and details). While upstream adding new packages may

not be very common, upstream deciding to use a testing framework is a lot more plausible.

Revision 0.18, February 20256 The build2 Packaging Guide

2.1.4 Initialize package repository with bdep new

https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md

The only notable drawback of using a multi-package setup with a single package is the extra

subdirectory for the package and a few extra files (such as packages.manifest that lists

the packages) in the root of the repository. If you are certain that the project that you are

converting is unlikely to have multiple packages (for example, because you are the upstream)

and won’t need extra dependencies for its tests (a reasonable assumption for a C project), then

you could instead go with the single-package repository where the repository root is the

package root. See bdep-new(1) for details on how to initialize such a repository. In this

guide, however, we will continue to assume a multi-package repository setup.

Make sure the first commit in the package repository contains no manual changes. In other

words, it should only add files as generated by bdep-new. This is relied upon during the

package review process (see Create review pull request for details).

2.1.5 Add upstream repository as git submodule

If the third-party project is available from a git repository, then the recommended approach

is to use the git submodule mechanism to make the upstream source code available inside

the package repository, customarily in a subdirectory called upstream/.

While git submodules receive much criticism, in our case we use them exactly as intended:

to select and track specific (release) commits of an external project. As a result, there is

nothing tricky about their use for our purpose and all the relevant commands will be provided

and explained, in case you are not familiar with this git mechanism.

Given the upstream repository URL, to add it as a submodule, run the following command

from the package repository root (continuing with our foo example):

$ cd foo/ # Change to the package repository root.
$ git submodule add https://github.com/<upstream>/foo.git upstream

You should prefer https:// over git:// for the upstream repository URL since the

git:// protocol may not be accessible from all networks. Naturally, never use a URL that

requires authentication, for example, SSH (SSH URLs start with git@github.com for

GitHub).

Besides the repository URL, you also need the commit of the upstream release which you will

be packaging. It is common practice to tag releases so the upstream tags would be the first

place to check. Failing that, you can always use the commit id.

Assuming the upstream release tag you are interested in is called vX.Y.Z, to update the

upstream submodule to point to this release commit, run the following commands:

$ cd upstream/
$ git checkout vX.Y.Z
$ cd ../

Then add and commit these changes:

7Revision 0.18, February 2025 The build2 Packaging Guide

2.1.5 Add upstream repository as git submodule

$ git add .
$ git status
$ git commit -m "Add upstream submodule, vX.Y.Z"

Now we have all the upstream source code for the version that we are packaging available in

the upstream/ subdirectory of our repository.

The plan is to then use symbolic links (symlinks) to non-invasively overlay the

build2-related files (buildfile, manifest, etc) with the upstream source code, if

necessary adjusting upstream structure to split it into multiple packages and/or to better align

with the source/output layouts recommended by build2 (see Using Symlinks in build2

Projects for background and rationale). But before we can start adding symlinks to the

upstream source (and other files like README, LICENSE, etc), we need to generate the

buildfile templates that match the upstream source code layout. This is the subject of the

next section.

While on UNIX-like operating systems symlinks are in widespread use, on Windows it’s a

niche feature that unfortunately could be cumbersome to use (see Symlinks and Windows for

details). However, the flexibility afforded by symlinks when packaging third-party projects is

unmatched by any other mechanism and we therefore use them despite potentially

sub-optimal packaging experience on Windows.

2.2 Create package and generate buildfile templates

This section covers the addition of the package to the repository we have prepared in the

previous steps and the generation of the buildfile templates that match the upstream

source code layout.

2.2.1 Decide on the package name

While choosing the package repository name was pretty straightforward, things get less clear

cut when it comes to the package name.

If you need a refresher on the distinction between projects and packages, see Terminology.

Picking a name for a package that provides an executable is still relatively straightforward:

you should use the upstream name (which is usually the same as the upstream project name)

unless there is a good reason to deviate. One recommended place to check before deciding on

a name is the Debian package repository. If their package name differs from upstream, then

there is likely a good reason for that and it is worth trying to understand what it is.

Tip: when trying to find the corresponding Debian package, search for the executable file

name in the package contents if you cannot find the package by its upstream name. Also

consider searching in the unstable distribution in addition to stable for newer packages.

Picking a name for a package that provides a library is where things can get more compli

cated. While all the recommendations that have been listed for executables apply equally to

libraries, there are additional considerations.

Revision 0.18, February 20258 The build2 Packaging Guide

2.2 Create package and generate buildfile templates

https://build2.org/article/symlinks.xhtml
https://build2.org/article/symlinks.xhtml
https://build2.org/article/symlinks.xhtml#windows
https://packages.debian.org/

In build2 we recommend (but not require) that new library projects use a name that starts

with lib in order to easily distinguish them from executables and avoid any clashes, potential

in the future (see Canonical Project Structure for details). To illustrate the problem, consider

the zstd project which provides a library and an executable. In upstream repository both are

part of the same codebase that doesn’t try to separate them into packages so that, for example,

library could be used without downloading and building the executable. In build2,

however, we do need to split them into two separate packages and both packages cannot be

called zstd. So we call them zstd and libzstd.

If you are familiar with the Debian package naming policy, you will undoubtedly recognize

this approach. In Debian all the library packages (with very few exceptions) start with the

lib prefix. So when searching for an upstream name in the Debian package repository make

sure to prefix it with lib (unless it already starts with this prefix, of course).

This brings the question of what to do about third-party libraries: should we add the lib
prefix to the package name if it’s not already there? Unfortunately, there is no clear cut

answer and whichever decision you make, there will be drawbacks. Specifically, if you add

the lib prefix, the main drawback is that the package name now deviates from the upstream

name and if the project maintainer ever decides to add build2 support to the upstream

repository, there could be substantial friction. On the other hand, if you don’t add the lib
prefix, then you will always run the risk of a future clash with an executable name. And, as

was illustrated with the zstd example, a late addition of an executable won’t necessarily

cause any issues to upstream. As a result, we don’t have a hard requirement for the lib prefix

unless there is already an executable that would cause the clash (this applies even if it’s not

being packaged yet or is provided by an unrelated project). If you don’t have a strong prefer

ence, we recommend that you add the lib prefix (unless it is already there). In particular, this

will free you from having to check for any potential clashes. See How should I name pack

ages when packaging third-party projects? for additional background and details.

To build some intuition for choosing package names, let’s consider several real examples. We

start with executables:

 upstream | upstream | Debian | build2 package| build2
project name|executable name|package name|repository name|package name
------------+---------------+------------+---------------+------------
byacc byacc byacc byacc byacc
sqlite sqlite3 sqlite3 sqlite sqlite3
vim xxd xxd xxd xxd
OpenBSD m4 - openbsd-m4 openbsd-m4
qtbase 5 moc qtbase5-\ Qt5 Qt5Moc
 dev-tools
qtbase 6 moc qt6-base-\ Qt6 Qt6Moc
 dev-tools

The examples are arranged from the most straightforward naming to the least. The last two

examples show that sometimes, after carefully considering upstream naming, you nevertheless

have no choice but to ignore it and forge your own path.

9Revision 0.18, February 2025 The build2 Packaging Guide

2.2.1 Decide on the package name

https://packages.debian.org/
https://github.com/build2/HOWTO/blob/master/entries/name-packages-in-project.md
https://github.com/build2/HOWTO/blob/master/entries/name-packages-in-project.md

Next let’s look at library examples. Notice that some use the same build2 package reposi

tory name as the executables above. This means they are part of the same multi-package

repository.

 upstream | upstream | Debian | build2 package| build2
project name|library name |package name|repository name|package name
------------+---------------+------------+---------------+------------
libevent libevent libevent libevent libevent
brotli brotli libbrotli brotli libbrotli
zlib zlib zlib zlib libz
sqlite libsqlite3 libsqlite3 sqlite libsqlite3
libsig\ libsigc++ libsigc++ libsig\ libsigc++
cplusplus cplusplus
qtbase 5 QtCore qtbase5-dev Qt5 libQt5Core
qtbase 6 QtCore qt6-base-dev Qt6 libQt6Core

If an upstream project is just a single library, then the project name is normally the same as

the library name (but there are exceptions, like libsigcplusplus in the above table).

However, when looking at the upstream repository that contains multiple components

(libraries and/or executables, like qtcore in the above example), it may not be immediately

obvious what the upstream’s library names are. In such cases, the corresponding Debian pack

ages can really help clarify the situation. Failing that, look into the existing build system. In

particular, if it generates the pkg-config file, then the name of this file is usually the

upstream library name.

Looking at the names of the library binaries is less helpful because on UNIX-like systems

they must start with the lib prefix. And on Windows the names of library binaries often

embed extra information (static/import, debug/release, etc) and may not correspond directly to

the library name.

And, speaking of multiple components, if you realize the upstream project provides multiple

libraries and/or executables, then you need to decide whether to split them into separate

build2 packages and if so, how. Here, again, the corresponding Debian packages can be a

good reference point. Note, however, that we often deviate from Debian’s splits, especially

when it comes to libraries. Such differences are usually due to Debian focusing on binary

packages while in build2 we are focusing on source packages.

To give a few examples, libevent shown in the above table provides several libraries

(libevent-core, libevent-extra, etc) and in Debian it is actually split into several

binary packages along these lines. In build2, however, there is a single source package that

provides all these libraries with everything except libevent-core being optional. An

example which shows the decision made in a different direction would be the Boost libraries:

in Debian all the header-only Boost libraries are bundled into a single package while in

build2 they are all separate packages.

The overall criteria here can be stated as follows: if a small family of libraries provide compli

mentary functionality (like libevent), then we put them all into a single package, usually

making the additional functionality optional. However, if the libraries are independent (like

Boost) or provide alternative rather than complimentary functionality (for example, like

different backends in imgui), then we make them separate packages. Note that we never

Revision 0.18, February 202510 The build2 Packaging Guide

2.2.1 Decide on the package name

bundle an executable and a (public) library in a single package (because, when consumed,

they usually require different dependency types: build-time vs run-time).

Note also that while it’s a good idea to decide on the package split and all the package names

upfront to avoid surprises later, you don’t have to actually provide all the packages right

away. For example, if upstream provides a library and an executable (like zstd), you can

start with the library and the executable package can be added later (potentially by someone

else).

In the "library and executable" case, if you plan to package both, the sensible strategy is to

first completely package the library stopping short of releasing and publishing, then repeat the

same process to package the executable, and finally release and publish both.

Admittedly, the recommendations in this section are all a bit fuzzy and one can choose differ

ent names or different package splits that could all seem reasonable. If you are unsure how to

split the upstream project or what names to use, get in touch to discuss the alternatives. It can

be quite painful to change these things after you have completed the remaining packaging

steps.

Continuing with our foo example, we will follow the above recommendation and call the

library package libfoo.

2.2.2 Decide on the package source code layout

Another aspect we need to decide on is the source code layout inside the package. Here we

want to stay as close to the upstream layout as possible unless there are valid reasons to

deviate. Staying close has the best chance of giving us a build without any compile errors

since the header inclusion in the project can be sensitive to this layout. This also makes it

easier for upstream to adopt the build2 build.

Sometimes, however, there are good reasons for deviating from upstream, especially in cases

where upstream is clearly following bad practices, for example including generically-named

public headers without the library name as a subdirectory prefix. If you do decide to change

the layout, it’s usually less disruptive (to the build) to rearrange things at the outer levels than

at the inner. For example, it should normally be possible to move/rename the top-level

tests/ directory or to place the library source files into a subdirectory.

Our overall plan is to create the initial layout and buildfile templates automatically using

bdep-new(1) in the --package mode, then "fill" the package with upstream source code

using symlinks, and finish off with tweaking the generated buildfiles to match the

upstream build.

The main rationale for using bdep-new(1) instead of doing everything by hand is that there

are many nuances in getting the build right and auto-generated buildfiles had years of

refinement and fine-tuning. The familiar structure also makes it easier for others to understand

your build, for example while reviewing your package submission or helping out with mainte

nance.

11Revision 0.18, February 2025 The build2 Packaging Guide

2.2.2 Decide on the package source code layout

https://build2.org/community.xhtml#help

The bdep-new(1) command supports a wide variety of source layouts. While it may take a

bit of time to understand the customization points necessary to achieve the desired layout for

your first package, this experience will pay off in spades when you work on converting subse

quent packages.

And so the focus of the following several steps is to iteratively discover the bdep-new(1)

command line that best approximates the upstream layout. The recommended procedure is as

follows:

1. Study the upstream source layout and existing build system.

2. Craft and execute the bdep-new(1) command line necessary to achieve the upstream

layout.

3. Study the auto-generated buildfiles for things that don’t fit and need to change. But

don’t rush to start manually editing the result. First get an overview of the required

changes and then check if it’s possible to achieve these changes automatically using one

of bdep-new(1) sub-options. If that’s the case, delete the package, and restart from

step 2.

This and the following two sections discuss each of these steps in more detail and also look at

some examples.

The first step above is to study the upstream project in order to understand where the various

parts are (headers, sources, etc) and how they are built. Things that can help here include:

Read through the existing build system definitions.

Try to build the project using the existing build system.

Try to install the project using the existing build system.

Look into the Debian package contents to see if there are any differences with regards to

the installation locations.

If while studying the upstream build system you notice other requirements, for example, the

need to compile source files other than C/C++ (such as Objective-C/C++, assembler, etc) or

the need to generate files from .in templates (or their .cmake/.meson equivalents), and

are wondering how they would be handled in the build2 build, see the Adjust source

buildfile: extra requirements step for a collection of pointers.

For libraries, the first key pieces of information we need to find is how the public headers are

included and where they are installed. The two common good practices is to either include the

public headers with a library name as a subdirectory, for example,

#include <foo/util.h>, or to include the library name into each public header name,

for example, #include <foo-util.h> or #include <foo.h> (in the last example

the header name is the library name itself, which is also fairly common). Unfortunately, there

is also a fairly common bad practice: having generically named headers (such as util.h)

included without the library name as a subdirectory.

Revision 0.18, February 202512 The build2 Packaging Guide

2.2.2 Decide on the package source code layout

The reason this is a bad practice is that libraries that have such headers cannot coexist, neither

in the same build nor when installed. See How do I deal with bad header inclusion practice? if

you encounter such a case. See Canonical Project Structure for additional background and

details.

Where should we look to get this information? While the library source files sound like a

natural place, oftentimes they include own headers with the "" style inclusion, either because

the headers are in the same directory or because the library build arranges for them to be

found this way with additional header search paths. As a result, a better place to look could be

the library’s examples and/or tests. Some libraries also describe which headers they provide

and how to include them in their documentation.

The way public headers are included normally determines where they are installed. If they are

included with a subdirectory, then they are normally installed into the same subdirectory in,

say, /usr/include/. Continuing with the above example, a header that is included as

<foo/util.h> would normally be installed as /usr/include/foo/util.h. On the

other hand, if the library name is part of the header name, then the headers are usually (but not

always) installed directly into, say, /usr/include/, for example as

/usr/include/foo-util.h.

While these are the commonly used installation schemes, there are deviations. In particular, in

both cases upstream may choose to add an additional subdirectory when installing (so the

above examples will instead end up with, say, /usr/include/foo-v1/foo/util.h
and /usr/include/foo-v1/sub/foo-util.h). See How do I handle extra header

installation subdirectory? if you encounter such a case.

The inclusion scheme would normally also be recreated in the upstream source code layout. In

particular, if upstream includes public headers with a subdirectory prefix, then this subdirec

tory would normally also be present in the upstream layout so that such a header can be

included from the upstream codebase directly. As an example, let’s say we determined that

public headers of libfoo are included with the foo/ subdirectory, such as

<foo/util.hpp>. One of the typical upstream layouts for such a library would look like

this:

$ tree upstream/
upstream/
|-- include/
|Â Â ·-- foo/
|Â Â ·-- util.hpp
·-- src/
 |-- priv.hpp
 ·-- util.cpp

Notice how the util.hpp header is in the foo/ subdirectory rather than in include/

directly.

The second key piece of information we need to find is whether and, if so, how the public

headers and sources are split. For instance, in the above example, we can see that public

headers go into include/ while sources and private headers go into src/. But they could

13Revision 0.18, February 2025 The build2 Packaging Guide

2.2.2 Decide on the package source code layout

also be combined in the same directory, for example, as in the following layout:

upstream/
·-- foo/
 |-- priv.hpp
 |-- util.cpp
 ·-- util.hpp

In multi-package projects, for example, those that provide both a library and an executable,

you would also want to understand how the sources are split between the packages.

If the headers and sources are split into different directories, then the source directory may or

may not have the inclusion subdirectory, similar to the header directory. In the above split

layout the src/ directory doesn’t contain the inclusion subdirectory (foo/) while the

following layout does:

upstream/
|-- include/
|Â Â ·-- foo/
|Â Â ·-- util.hpp
·-- src/
 ·-- foo/
 |-- priv.hpp
 ·-- util.cpp

With the understanding of these key properties of upstream layout you should be in a good

position to start crafting the bdep-new(1) command line that recreates it.

The bdep-new documentation uses slightly more general terminology compared to what we

used in the previous section in order to also be applicable to projects that use modules instead

of headers.

Specifically, the inclusion subdirectory (foo/) is called source subdirectory while the header

directory (include/) and source directory (src/) are called header prefix and source

prefix, respectively.

2.2.3 Craft bdep new command line to create package

The recommended procedure for this step is to read through the bdep-new’s SOURCE

LAYOUT section (which contains a large number of examples) while experimenting with

various options in an attempt to create the desired layout. If the layout you’ve got isn’t quite

right yet, simply remove the package directory along with the packages.manifest file

and try again.

Next to packages.manifest, bdep-new will also create the "glue" buildfile that

allows building all the packages from the repository root. You don’t need to remove it when

re-creating the package.

Let’s illustrate this approach on the first split layout from the previous section:

Revision 0.18, February 202514 The build2 Packaging Guide

2.2.3 Craft bdep new command line to create package

upstream/
|-- include/
|Â Â ·-- foo/
|Â Â ·-- util.hpp
·-- src/
 |-- priv.hpp
 ·-- util.cpp

We know it’s split, so let’s start with that and see what we get. Remember, our foo package

repository that we have cloned and initialized earlier looks like this:

$ tree foo/
foo/
|-- upstream/
|-- .gitattributes
|-- .gitignore
|-- README.md
·-- repositories.manifest

Now we create the libfoo package inside:

$ cd foo/
$ bdep new --package --lang c++ --type lib,split libfoo
$ tree libfoo/
libfoo/
|-- include/
|Â Â ·-- libfoo/
|Â Â ·-- foo.hxx
·-- src/
 ·-- libfoo/
 ·-- foo.cxx

The outer structure looks right, but inside include/ and src/ things are a bit off. Specifi

cally, the source subdirectory should be foo/, not libfoo/, there shouldn’t be one inside

src/, and the file extensions don’t match upstream. All this can be easily tweaked, however:

$ rm -r libfoo/ packages.manifest
$ bdep new --package \
 --lang c++,cpp \
 --type lib,split,subdir=foo,no-subdir-source \
 libfoo
$ tree libfoo/
libfoo/
|-- include/
|Â Â ·-- foo/
|Â Â ·-- foo.hpp
·-- src/
 ·-- foo.cpp

The other bdep-new sub-options (see the bdep-new(1) man page for the complete list)

that you will likely want to use when packaging a third-party project include:

no-version

Omit the auto-generated version header. Usually upstream will provide its own equiva

lent of this functionality.

15Revision 0.18, February 2025 The build2 Packaging Guide

2.2.3 Craft bdep new command line to create package

Note that even if upstream doesn’t provide any version information, it’s not a good idea

to try to rectify this by providing your own version header since upstream may add it in a

future version and you may end up with a conflict. Instead, work with the project authors to

rectify this upstream.

no-symexport

auto-symexport

The no-symexport sub-option suppresses the generation of the DLL symbol export

ing header. This is an appropriate option if upstream provides its own symbol exporting

arrangements.

The auto-symexport sub-option enables automatic DLL symbol exporting support

(see Automatic DLL Symbol Exporting for background). This is an appropriate option if

upstream relies on similar support in the existing build system. It is also recommended

that you give this functionality a try even if upstream does not support building shared

libraries on Windows.

binless

Create a header-only library. See Don’t make library header-only if it can be compiled

and How do I make a header-only C/C++ library?

buildfile-in-prefix

Place header/source buildfiles into the header/source prefix directory instead of

source subdirectory. To illustrate the difference, compare these two auto-generated

layouts paying attention to the location of buildfiles:

$ bdep new ... --type lib,split,subdir=foo libfoo
$ tree libfoo/
libfoo/
|-- include/
|Â Â ·-- foo/
|Â Â |-- buildfile
|Â Â ·-- foo.hpp
·-- src/
 ·-- foo/
 |-- buildfile
 ·-- foo.cpp

$ bdep new ... --type lib,split,subdir=foo,buildfile-in-prefix libfoo
$ tree libfoo/
libfoo/
|-- include/
|Â Â |-- foo/
|Â Â |Â Â ·-- foo.hpp
|Â Â ·-- buildfile
·-- src/
 |-- foo/
 |Â Â ·-- foo.cpp
 ·-- buildfile

Note that this sub-option only makes sense if we have the header and/or source prefixes

(include/ and src/ in our case) as well as the source subdirectory (foo/ in our

case).

Revision 0.18, February 202516 The build2 Packaging Guide

2.2.3 Craft bdep new command line to create package

https://github.com/build2/HOWTO/blob/master/entries/make-header-only-library.md

Why would we want to do this? The main reason is to be able to symlink the entire

upstream directories rather than individual files. In the first listing, the generated

buildfiles are inside the foo/ subdirectories which mean we cannot just symlink

foo/ from upstream.

With a large number of files to symlink, this can be such a strong motivation that it may

make sense to invent a source subdirectory in the source prefix even if upstream doesn’t

have one. See Don’t build your main targets in the root buildfile for details on this

technique.

Another reason we may want to move buildfiles to prefix is to be able to handle

upstream projects that have multiple source subdirectories. While this situation is not

very common in the header prefix, it can be encountered in the source prefix of more

complex projects, where upstream wishes to organize the source files into components.

If upstream uses a mixture of C and C++, then it’s recommended to set this up using the

--lang sub-option of bdep-new. For example:

$ bdep new --lang c++,c ...

Continuing with our libfoo example, assuming upstream provides its own symbol export

ing, the final bdep-new command line would be:

$ bdep new --package \
 --lang c++,cpp \
 --type lib,split,subdir=foo,no-subdir-source,no-version,no-symexport \
 libfoo

When packaging an executable, things are usually quite a bit simpler: there is no version

header, symbol exporting, and the layout is normally combined (since there are no public

headers). Typically the only potentially tricky decision you will need to make is whether to

use prefix or source subdirectory. Most likely it will be prefix since most executable projects

will use the "" style inclusion for own headers. For example:

$ bdep new --package \
 --lang c++ \
 --type exe,no-subdir,prefix=foo,export-stub \
 foo

The export-stub sub-option causes the generation of build/export.build, an

export stub that facilitates the importation of targets from our package (see Target Importation

for details). The generation of this file for a library is the default since it will normally be used

by other projects and thus imported. An executable, however, will only need an export stub if

it can plausibly be used during the build (see Build-Time Dependencies and Linked Configu

rations for background). Source code generators are an obvious example of such executables.

A less obvious example would be compression utilities such as gzip or zstd. If you are

unsure, it’s best to provide an export stub.

17Revision 0.18, February 2025 The build2 Packaging Guide

2.2.3 Craft bdep new command line to create package

2.2.4 Review and test auto-generated buildfile templates

Let’s get a more complete view of what got generated by the final bdep-new command line

from the previous section:

$ tree libfoo/
libfoo/
|-- build/
|Â Â ·-- ...
|-- include/
|Â Â ·-- foo/
|Â Â |-- buildfile
|Â Â ·-- foo.hpp
|-- src/
|Â Â |-- buildfile
|Â Â ·-- foo.cpp
|-- tests/
|Â Â |-- build/
|Â Â |Â Â ·-- ...
|Â Â |-- basics/
|Â Â |Â Â |-- buildfile
|Â Â |Â Â ·-- driver.cpp
|Â Â ·-- buildfile
|-- buildfile
|-- manifest
·-- README.md

Once the overall layout looks right, the next step is to take a closer look at the generated

buildfiles to make sure that overall they match the upstream build. Of particular interest

are the header and source directory buildfiles (libfoo/include/foo/buildfile
and libfoo/src/buildfile in the above listing) which define how the library is built

and installed.

Here we are focusing on the macro-level differences that are easier to change by tweaking the

bdep-new command line rather than manually. For example, if we look at the generated

source directory buildfile and realize it builds a binful library (that is, a library that

includes source files and therefore produces library binaries) while the upstream library is

header-only, it is much easier to fix this by re-running bdep-new with the binless
sub-option than by changing the buildfiles manually.

Don’t be tempted to start making manual changes at this stage even if you cannot see anything

else that can be fixed with a bdep-new re-run. This is still a dry-run and we will recreate the

package one more time in the following section before starting manual adjustments.

Besides examining the generated buildfiles, it’s also a good idea to build, test, and install

the generated package to make sure everything ends up where you expected and matches

upstream where necessary. In particular, make sure public headers are installed into the same

location as upstream (unless you have decided to deviate, of course) or at least it’s clear how

to tweak the generated buildfiles to achieve this.

Revision 0.18, February 202518 The build2 Packaging Guide

2.2.4 Review and test auto-generated buildfile templates

The bdep-new-generated library is a simple "Hello, World!" example that can nevertheless

be built, tested, and installed. The idea here is to verify it matches upstream using the gener

ated source files before replacing them with the upstream source file symlinks.

If you are using Windows, then you will need to temporarily replace the no-symexport
sub-option with auto-symexport in order to make the generated library buildable. But do

not forget to drop this sub-option in the next step.

Note that at this stage it’s easiest to build, test, and install in the source directory, skipping the

bdep initialization of the package (which we would have to de-initialize before we can re-run

bdep-new). Continue with the above example, the recommended sequence of commands

would be:

$ cd libfoo/
$ b update
$ b test
$ rm -rf /tmp/install
$ b install config.install.root=/tmp/install
$ b clean

One relatively common case where the installation location may not match upstream are

libraries that include their headers without the subdirectory prefix (for example,

<foo_util.h> instead of <foo/util.h>). In such cases, in the bdep-new command,

you may want to use prefix rather than source subdirectory (with the latter being the default).

For example:

$ bdep new --lib,no-subdir,prefix=foo ...

See SOURCE LAYOUT for details.

Let’s also briefly discuss other subdirectories and files found in the bdep-new-generated

libfoo package.

The build/ subdirectory is the standard build2 place for project-wide build system infor

mation (see Project Structure for details). We will look closer at its contents in the following

sections.

In the root directory of our package we find the root buildfile and package manifest.

We will be tweaking both in the following steps. There is also README.md which we will

replace with the upstream symlink.

The tests/ subdirectory is the standard build2 tests subproject (see Testing for back

ground and details). While you can suppress its generation with the no-tests bdep-new
sub-option, we recommend that you keep it and use it as a starting point for porting upstream

tests or, if upstream doesn’t provide any, for a basic "smoke test".

You can easily add/remove/rename this tests/ subproject. The only place where it is

mentioned explicitly and where you will need to make changes is the root buildfile. In

particular, if upstream provides examples that you wish to port, it is recommended that you

use a copy of the generated tests/ subproject as a starting point (not forgetting to add the

19Revision 0.18, February 2025 The build2 Packaging Guide

2.2.4 Review and test auto-generated buildfile templates

corresponding entry in the root buildfile).

2.2.5 Create final package

If you are satisfied with the bdep-new command line and there are no more automatic

adjustments you can squeeze out of it, then it’s time to re-run bdep-new one last time to

create the final package.

While redoing this step later will require more effort, especially if you’ve made manual modi

fications to buildfile and manifest, nothing is set in stone and it can be done again by

simply removing the package directory, removing (or editing, if you have multiple packages

and only want to redo some of them) packages.manifest, and starting over.

This time, however, we will do things a bit differently in order to take advantage of some

additional automation offered by bdep-new.

Firstly, we will use the special third-party sub-option which is meant for converting

third-party projects to build2. Specifically, this sub-option automatically enables

no-version and no-symexport (unless auto-symexport is specified). It also adds a

number of values to manifest that makes sense to specify in a package of a third-party

project. Finally, it generates the PACKAGE-README.md template which describes how to

use the package from a build2-based project (see the package-description mani
fest value for background).

Secondly, if the package directory already exists and contains certain files, bdep-new can

take this into account when generating the root buildfile and package manifest. In

particular, it will try to guess the license from the LICENSE file and extract the summary

from README.md and use this information in manifest as well as generated

PACKAGE-README.md.

If the file names or formats used by upstream don’t match those recognized by bdep-new,

then for now simply omit the corresponding files from the package directory and add them

later manually. Similarly, if an attempt to extract the information is unsuccessful, we will

have a chance to adjust it in manifest later.

Specifically, for README, bdep-new recognizes README.md, README.txt and README
but will only attempt to extract the summary from README.md.

For license files, bdep-new recognizes LICENSE, LICENSE.txt LICENSE.md,

COPYING, and UNLICENSE.

For changes-related files, bdep-new recognizes NEWS, CHANGES, and CHANGELOG in

various cases as well as with the .md, .txt extensions.

Continuing with our libfoo example and assuming upstream provides the README.md,

LICENSE, and NEWS files, we first manually create the package directory, then add the

symlinks, and finally run bdep-new (notice that we have replaced no-version and

no-symexport with third-party and omitted the package name from the bdep-new

Revision 0.18, February 202520 The build2 Packaging Guide

2.2.5 Create final package

command line since we are running from inside the package directory):

$ cd foo/ # Change to the package repository root.

$ rm -r libfoo/ packages.manifest
$ mkdir libfoo/

$ cd libfoo/ # Change to the package root.
$ ln -s ../upstream/README.md ./
$ ln -s ../upstream/LICENSE ./
$ ln -s ../upstream/NEWS ./

$ bdep new --package \
 --lang c++,cpp \
 --type lib,split,subdir=foo,no-subdir-source,third-party

The final contents of our package will look like this (-> denotes a symlink):

$ cd ../
$ tree libfoo/
libfoo/
|-- build/
|Â Â ·-- ...
|-- include/
|Â Â ·-- foo/
|Â Â |-- buildfile
|Â Â ·-- foo.hpp
|-- src/
|Â Â |-- buildfile
|Â Â ·-- foo.cpp
|-- tests/
|Â Â |-- build/
|Â Â |Â Â ·-- ...
|Â Â |-- basics/
|Â Â |Â Â |-- buildfile
|Â Â |Â Â ·-- driver.cpp
|Â Â ·-- buildfile
|-- buildfile
|-- manifest
|-- NEWS -> ../upstream/NEWS
|-- LICENSE -> ../upstream/LICENSE
|-- README.md -> ../upstream/README.md
·-- PACKAGE-README.md

If auto-detection of README, LICENSE, and NEWS succeeds, then you should see the

summary and license values automatically populated in manifest and the symlinked

files listed in the root buildfile.

2.2.6 Adjust package version

While adjusting the bdep-new-generated code is the subject of the following sections, one

tweak that we want to make right away is to change the package version in the manifest

file.

21Revision 0.18, February 2025 The build2 Packaging Guide

2.2.6 Adjust package version

In this guide we will assume the upstream package uses semver (semantic version) or

semver-like (that is, has three version components) and will rely on the continuous versioning

feature of build2 to make sure that each commit in our package repository has a distinct

version (see Versioning and Release Management for background).

If upstream does not use semver, then see How do I handle projects that don’t use semantic

versioning? and How do I handle projects that don’t use versions at all? for available options.

If you decide to use the non-semver upstream version as is, then you will have to forgo

continuous versioning as well as the use of bdep-release(1) for release management.

The rest of the guide, however, will still apply. In particular, you will still be able to use

bdep-ci(1) and bdep-publish(1) with a bit of extra effort.

The overall plan to implement continuous versioning is to start with a pre-release snapshot of

the upstream version, keep it like that while we are adjusting the bdep-new-generated

package and committing our changes (at which point we get distinct snapshot versions), and

finally, when the package is ready to publish, change to the final upstream version with the

help of bdep-release(1). Specifically, if the upstream version is X.Y.Z, then we start

with the X.Y.Z-a.0.z pre-release snapshot.

In continuous versioning X.Y.Z-a.0.z means a snapshot after the (non-existent) 0th alpha

pre-release of the X.Y.Z version. See Versioning and Release Management for a more

detailed explanation and examples.

Let’s see how this works for our libfoo example. Say, the upstream version that we are

packaging is 2.1.0. This means we start with 2.1.0-a.0.z.

Naturally, the upstream version that we are using should correspond to the commit of the

upstream submodule we have added in the Add upstream repository as git submodule

step.

Next we edit the manifest file in the libfoo package and change the version value to

read:

version: 2.1.0-a.0.z

Let’s also commit this initial state of the package for easier rollbacks:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Initialize package"

2.3 Fill package with source code and add dependencies

With the package skeleton ready, the next steps are to fill it with upstream source code, add

dependencies, and make any necessary manual adjustments to the generated buildfiles,

manifest, etc. If we do this all at once, however, it can be hard to pin-point the cause of

build failures. For example, if we convert both the library and its tests right away and some

thing doesn’t work, it can be hard to determine whether the mistake is in the library or in the

Revision 0.18, February 202522 The build2 Packaging Guide

2.3 Fill package with source code and add dependencies

https://github.com/build2/HOWTO/blob/master/entries/handle-projects-which-dont-use-semver.md
https://github.com/build2/HOWTO/blob/master/entries/handle-projects-which-dont-use-semver.md
https://github.com/build2/HOWTO/blob/master/entries/handle-projects-which-dont-use-version.md

tests. As a result, we are going to split this work into a sequence or smaller steps that incre

mentally replace the bdep-new-generated code with upstream while allowing us to test each

change individually. We will also commit the changes on each step for easy rollbacks. Specif

ically, the overall plan is as follows:

1. Initialize (bdep-init) the package in one or more build configurations.

2. Add dependencies, if any.

3. Fill the library with upstream source code.

4. Adjust project-wide and source subdirectory buildfiles.

5. Make a smoke test for the library.

6. Replace the smoke test with upstream tests.

7. Tweak root buildfile and manifest.

The first three steps are the subject of this section with the following sections covering the rest

of the plan.

As you become more experienced with packaging third-party projects for build2, it may

make sense to start combining or omitting some steps, especially for simpler libraries. For

example, if you see that a library comes with a simple test that shouldn’t cause any complica

tions, then you could omit the smoke test.

2.3.1 Initialize package in build configurations

Before we start making any changes to the bdep-new-generated files, let’s initialize the

package in at least one build configuration so that we are able to build and test our changes

(see Getting Started Guide for background on bdep-based development workflow). Continu

ing with our libfoo example from the earlier steps:

$ cd foo/ # Change to the package repository root.
$ bdep init -C ../foo-gcc @gcc cc config.cxx=g++

If you are initializing subsequent packages in the already created configuration, then the

command line will be just:

$ bdep init @gcc

Let’s build and test the bdep-new-generated package to make sure everything is in order:

$ bdep update
$ bdep test
$ bdep clean

You can create additional configurations, for example, if you have access to several compil

ers. For instance, to create a build configuration for Clang:

$ bdep init -C ../foo-clang @clang cc config.cxx=clang++

23Revision 0.18, February 2025 The build2 Packaging Guide

2.3.1 Initialize package in build configurations

If you would like to perform a certain operation on all the build configurations, pass the

-a|--all flag to bdep:

$ bdep update -a
$ bdep test -a
$ bdep clean -a

Let’s also verify that the resulting package repository is clean (doesn’t have any uncommitted

or untracked files):

$ git status

2.3.2 Add dependencies

If the upstream project has any dependencies, now is a good time to specify them so that when

we attempt to build the upstream source code, they are already present.

Identifying whether the upstream project has dependencies is not always easy. The natural

first places to check are the documentation and the existing build system. Sometimes projects

also bundle their dependencies with the project source code (also called vendoring). So it

makes sense to look around the upstream repository for anything that looks like bundled

dependencies. Normally we would need to "unbundle" such dependencies when converting to

build2 by instead specifying a dependency on an external package (see Don’t bundle

dependencies for background).

While there are several reasons we insist on unbundling of dependencies, the main one is that

bundling can cause multiple, potentially conflicting copies of the same dependency to exist in

the build. This can cause subtle build failures that are hard to understand and track down.

One particularly common case to check for is bundling of the testing framework, such as

catch2, by C++ projects. If you have identified that the upstream tests depend on a testing

framework (whether bundled or not), see How do I handle tests that have extra dependencies?

for the recommended way to deal with that.

One special type of dependency which is easy to overlook is between packages in the same

package repository. For example, if we were packaging both libfoo as well as the foo
executable that depends on it, then the foo package has a dependency on libfoo and it

must be specified. In this case we don’t need to add anything to repositories.mani
fest and in the depends entry (see below) in foo’s manifest we will normally use the

special == $ version constraint, meaning libfoo should have the same version as foo (see

the depends package manifest value for details). For example:

depends: libfoo == $

If you have concluded that the upstream project doesn’t have any dependencies, then you can

remove repositories.manifest from the package repository root (unless you have

already done so), commit this change, and skip the rest of this section.

Revision 0.18, February 202524 The build2 Packaging Guide

2.3.2 Add dependencies

https://cppget.org/catch2
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md

And if you are still reading, then we assume you have a list of dependencies you need to add,

preferably with their minimum required versions. If you could not identify the minimum

required version for a dependency, then you can fallback to the latest available version, as will

be described in a moment.

With the list of dependencies in hand, the next step is to determine whether they are already

available as build2 packages. For that, head over to cppget.org and search for each depen

dency.

If you are unable to find a package for a dependency, then it means it hasn’t been packaged

for build2 yet. Check the places mentioned in the Check if package repository already

exists step to see if perhaps someone is already working on the package. If not and the depen

dency is not optional, then the only way forward is to first package the dependency.

If you do find a package for a dependency, then note the section of the repository (stable,

testing, etc; see Package Repositories for background) from which the minimum required

version of the package is available. If you were unable to identify the minimum required

version, then note the latest version available from the stable section.

Given the list of repository sections, edit the repositories.manifest file in the

package repository root and uncomment the entry for cppget.org:

:
role: prerequisite
location: https://pkg.cppget.org/1/stable
#trust: ...

Next, replace stable at the end of the location value with the least stable section from

your list. For example, if your list contains stable, testing, and beta, then you need

beta (the sections form a hierarchy and so beta includes testing which in turn includes

stable).

If you wish, you can also uncomment the trust value and replace ... with the repository

fingerprint. This way you won’t be prompted to confirm the repository authenticity on the

first fetch. See Adding and Removing Dependencies for details.

Once this is done, edit manifest in package root and add the depends value for each

dependency. See Adding and Removing Dependencies for background. In particular, here you

will use the minimum required version (or the latest available) to form a version constraint.

Which constraint operator to use will depend on the dependency’s versioning policies. If the

dependency uses semver, then a ^-based constraint is a sensible default.

As an example, let’s say our libfoo depends on libz, libasio, and libsqlite3. To

specify these dependencies we would add the following entries to its manifest:

depends: libz ^1.2.0
depends: libasio ^1.28.0
depends: libsqlite3 ^3.39.4

25Revision 0.18, February 2025 The build2 Packaging Guide

2.3.2 Add dependencies

https://cppget.org/
https://cppget.org/?about
https://cppget.org/?about

With all the dependencies specified, let’s now synchronize the state of the build configura

tions with our changes by running bdep-sync(1) from the package repository root:

$ bdep sync -a

This command should first fetch the metadata for the repository we specified in reposito
ries.manifest and then fetch, unpack and configure each dependency that we specified

in manifest.

If you have any build-time dependencies (see Build-Time Dependencies and Linked Configu

rations for background), then you will get a warning about the corresponding

config.import.* variable being unused and therefore dropped. This is because we

haven’t yet added the corresponding import directives to our buildfiles. For now you

can ignore this warning, which we will fix later, when we adjust the generated buildfiles.

We can examine the resulting state, including the version of each dependency, with

bdep-status(1):

$ bdep status -ai

The last step for this section is to commit our changes:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Add dependencies"

2.3.3 Fill with upstream source code

Now we are ready to begin replacing the bdep-new-generated files with upstream source

code symlinks. We start with the library’s header and source files. Continuing with our

libfoo example, this is what we currently have (notice that LICENSE, README.md, and

NEWS are already symlinks to upstream):

$ cd foo/ # Change to the package repository root.

$ tree libfoo/
libfoo/
|-- build/
|Â Â ·-- ...
|-- include/
|Â Â ·-- foo/
|Â Â |-- buildfile
|Â Â ·-- foo.hpp
|-- src/
|Â Â |-- buildfile
|Â Â ·-- foo.cpp
|-- tests/
|Â Â ·-- ...
|-- buildfile
|-- manifest

Revision 0.18, February 202526 The build2 Packaging Guide

2.3.3 Fill with upstream source code

|-- NEWS -> ../upstream/NEWS
|-- LICENSE -> ../upstream/LICENSE
|-- README.md -> ../upstream/README.md
·-- PACKAGE-README.md

Now we replace generated include/foo/foo.hpp with the library’s real headers and

src/foo.cpp with its real source files:

$ cd libfoo/ # Change to the package root.

$ cd include/foo/
$ rm foo.hpp
$ ln -s ../../../upstream/include/foo/*.hpp ./
$ cd -

$ cd src/
$ rm foo.cpp
$ ln -s ../../upstream/src/*.hpp ./
$ ln -s ../../upstream/src/*.cpp ./
$ cd -

$ tree libfoo/
libfoo/
|-- build/
|Â Â ·-- ...
|-- include/
|Â Â ·-- foo/
|Â Â |-- buildfile
|Â Â |-- core.hpp -> ../../../upstream/include/foo/core.hpp
|Â Â ·-- util.hpp -> ../../../upstream/include/foo/util.hpp
|-- src/
|Â Â |-- buildfile
|Â Â |-- impl.hpp -> ../../upstream/src/impl.hpp
|Â Â |-- core.cpp -> ../../upstream/src/core.cpp
|Â Â ·-- util.cpp -> ../../upstream/src/util.cpp
|-- tests/
|Â Â ·-- ...
·-- ...

Note that the wildcards used above may not be enough in all situations and it’s a good idea to

manually examine the relevant upstream directories and make sure nothing is missing. Specif

ically, look out for:

Header/sources with other extensions, for example, C, Objective-C, etc.

Other files that may be needed, for example, .def, config.h.in, etc.

Subdirectories that contain more header/source files.

If upstream contains subdirectories with additional header/source files, then you can symlink

entire subdirectories instead of doing it file by file. For example, let’s say libfoo’s

upstream source directory contains the impl/ subdirectory with additional source files:

$ cd src/
$ ln -s ../../upstream/impl ./
$ cd -

$ tree libfoo/
libfoo/

27Revision 0.18, February 2025 The build2 Packaging Guide

2.3.3 Fill with upstream source code

|-- build/
|Â Â ·-- ...
|-- include/
|Â Â ·-- ...
|-- src/
|Â Â |-- impl/ -> ../../upstream/src/impl/
|Â Â |Â Â |-- bar.cpp
|Â Â |Â Â ·-- baz.cpp
|Â Â |-- buildfile
|Â Â |-- impl.hpp -> ../../upstream/src/impl.hpp
|Â Â |-- core.cpp -> ../../upstream/src/core.cpp
|Â Â ·-- util.cpp -> ../../upstream/src/util.cpp
|-- tests/
|Â Â ·-- ...
·-- ...

Wouldn’t it be nice if we could symlink the entire top-level subdirectories (include/foo/
and src/ in our case) instead of symlinking individual files? As discussed in Craft bdep
new command line to create package, we can, but we will need to change the package layout.

Specifically, we will need to move the buildfiles out of the source subdirectories with

the help of the buildfile-in-prefix sub-option of bdep-new. In the above case, we

will also need to invent a source subdirectory in src/. Whether this is a worthwhile change

largely depends on how many files you have to symlink individually. If it’s just a handful,

then it’s probably not worth the complication, especially if you have to invent source subdi

rectories. On the other hand, if you are looking at symlinking hundreds of files, changing the

layout makes perfect sense.

One minor drawback of symlinking entire directories is that you cannot easily patch individ

ual upstream files (see How do I patch upstream source code?).

You will also need to explicitly list such directories as symlinks in .gitattributes if

you want your package to be usable from the git repository directly on Windows. See

Symlinks and Windows for details.

We won’t be able to test this change yet because to make things build we will most likely also

need to tweak the generated buildfiles, which is the subject of the next section.

However, it still makes sense to commit our changes to make rollbacks easier:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Add upstream source symlinks"

2.4 Adjust project-wide and source buildfiles

With source code and dependencies added, the next step is to adjust the regenerated build
files that build the library. This involves two places: the project-wide build system files in

build/ and the source subdirectory buildfiles (in include/ and src/ for our

libfoo example).

Revision 0.18, February 202528 The build2 Packaging Guide

2.4 Adjust project-wide and source buildfiles

https://build2.org/article/symlinks.xhtml#windows

2.4.1 Adjust project-wide build system files in build/

We start with reviewing and adjusting the files in the build/ subdirectory of our package,

where you will find three files:

$ cd foo/ # Change to the package repository root.
$ tree libfoo/
libfoo/
|-- build/
|Â Â |-- bootstrap.build
|Â Â |-- root.build
|Â Â ·-- export.build
·-- ...

To recap, the first two contain the project-wide build system setup (see Project Structure for

details) while the last is an export stub that facilitates the importation of targets from our

package (see Target Importation for details).

Normally you don’t need to change anything in bootstrap.build – all it does is specify

the build system project name and load a standard set of core build system modules. Likewise,

export.build is ok as generated unless you need to do something special, like exporting

targets from different subdirectories of your package.

While root.build is also often good as is, situations where you may need to tweak it are

not uncommon and include:

Loading an additional build system module.

For example, if your package makes use of Objective-C/C++ (see Objective-C Compila

tion and Objective-C++ Compilation) or Assembler (see Assembler with C Preprocessor

Compilation), then root.build would be the natural place to load the corresponding

modules.

If your package uses a mixture of C and C++, then it’s recommended to set this up using

the --lang sub-option of bdep-new rather than manually. For example:

$ bdep new --lang c++,c ...

Specifying package configuration variables.

If upstream provides the ability to configure their code, for example to enable optional

features, then you may want to translate this to build2 configuration variables, which

are specified in root.build (see Project Configuration for background and details).

Note that you don’t need to add all the configuration variables right away. Instead, you

could first handle the "core" functionality which doesn’t require any configuration and

then add the configuration variables one by one while also making the corresponding

changes in buildfiles.

29Revision 0.18, February 2025 The build2 Packaging Guide

2.4.1 Adjust project-wide build system files in build/

One type of configuration that you should normally not expose when packaging for

build2 is support for both header-only and compiled modes. See Don’t make library

header-only if it can be compiled for details.

Also, in C++ projects, if you don’t have any inline or template files, then you can drop the

assignment of the file extension for the ixx{} and txx{} target types, respectively.

If you have added any configuration variables and would like to use non-default values for

some of them in your build, then you will need to reconfigure the package. For example, let’s

say we have added the config.libfoo.debug variable to our libfoo package which

enables additional debugging facilities in the library. This is how we can reconfigure all our

builds to enable this functionality:

$ bdep sync -a config.libfoo.debug=true

If you have made any changes, commit them (similar to the previous step, we cannot test

things just yet):

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Adjust project-wide build system files"

2.4.2 Adjust source subdirectory buildfiles

The last step we need to perform before we can try to build our library is to adjust its build
files. These buildfiles are found in the source subdirectory or, if we used the build
file-in-prefix bdep-new sub-option, in the prefix directory. There will be two

buildfiles if we use the split layout (split sub-option) or a single buildfile in the

combined layout. The single buildfile in the combined layout contains essentially the

same definitions as the split buildfiles but combined into one and with some minor

simplifications that this allows. Here we will assume the split layout and continue with our

libfoo from the previous sections. To recap, here is the layout we’ve got with the build
files of interest found in include/foo/ and in src/:

libfoo/
|-- build/
|Â Â ·-- ...
|-- include/
|Â Â ·-- foo/
|Â Â |-- buildfile
|Â Â |-- core.hpp -> ../../../upstream/include/foo/core.hpp
|Â Â ·-- util.hpp -> ../../../upstream/include/foo/util.hpp
|-- src/
|Â Â |-- buildfile
|Â Â |-- impl.hpp -> ../../upstream/src/impl.hpp
|Â Â |-- core.cpp -> ../../upstream/src/core.cpp
|Â Â ·-- util.cpp -> ../../upstream/src/util.cpp
|-- tests/
|Â Â ·-- ...
·-- ...

Revision 0.18, February 202530 The build2 Packaging Guide

2.4.2 Adjust source subdirectory buildfiles

If instead of a library you are packaging an executable, you can skip directly to Adjust source

buildfile: executables.

2.4.3 Adjust header buildfile

The buildfile in include/foo/ is pretty simple:

The buildfile in your package may look slightly different, depending on the exact

bdep-new sub-options used. However, all the relevant definitions discussed below should

still be easily recognizable.

pub_hdrs = {hxx ixx txx}{**}

./: $pub_hdrs

Install into the foo/ subdirectory of, say, /usr/include/
recreating subdirectories.
#
{hxx ixx txx}{*}:
{
 install = include/foo/
 install.subdirs = true
}

Normally, the only change that you would make to this buildfile is to adjust the installa

tion location of headers (see Installing for background). In particular, if our headers were

included without the <foo/...> prefix but instead contained the library name in their

names (for example, foo-util.hpp), then the installation setup would instead look like

this:

Install directly into say, /usr/include/ recreating subdirectories.
#
{hxx ixx txx}{*}:
{
 install = include/
 install.subdirs = true
}

If the library doesn’t have any headers in nested subdirectories (for example,

<foo/util/string.hpp>), you can drop the install.subdirs variable:

Install into the foo/ subdirectory of, say, /usr/include/.
#
{hxx ixx txx}{*}: install = include/foo/

In the combined layout, the installation-related definitions are at the end of the combined

buildfile.

Compared to the split layout where the public and private headers are separated physically, in

the combined layout you may need to achieve the same result (that is, avoid installing private

headers) at the build system level. If the library provides only a handful of public headers and

this set is unlikely to change often, then listing them explicitly is the most straightforward

approach. For example (the @./ qualifier tells build2 they are in the source directory):

31Revision 0.18, February 2025 The build2 Packaging Guide

2.4.3 Adjust header buildfile

Only install public headers into, say, /usr/include/.
#
h{foo}@./ h{foo_version}@./: install = include/
h{*}: install = false

See also How do I handle extra header installation subdirectory?

2.4.4 Adjust source buildfile: overview

Next is the buildfile in src/:

Again, the buildfile in your package may look slightly different, depending on the exact

bdep-new sub-options used. However, all the relevant definitions discussed below should

still be easily recognizable.

For a binless (header-only) library, this buildfile will contain only a small subset of the

definitions shown below. See How do I make a header-only C/C++ library? for additional

considerations when packaging header-only libraries.

intf_libs = # Interface dependencies.
impl_libs = # Implementation dependencies.
#import xxxx_libs += libhello%lib{hello}

Public headers.
#
pub = [dir_path] ../include/foo/

include $pub

pub_hdrs = $($pub/ pub_hdrs)

lib{foo}: $pub/{$pub_hdrs}

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx ixx txx cxx}{**} $impl_libs $intf_libs

Build options.
#
out_pfx_inc = [dir_path] $out_root/include/
src_pfx_inc = [dir_path] $src_root/include/
out_pfx_src = [dir_path] $out_root/src/
src_pfx_src = [dir_path] $src_root/src/

cxx.poptions =+ "-I$out_pfx_src" "-I$src_pfx_src" \
 "-I$out_pfx_inc" "-I$src_pfx_inc"

#obja{*}: cxx.poptions += -DFOO_STATIC_BUILD
#objs{*}: cxx.poptions += -DFOO_SHARED_BUILD

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$out_pfx_inc" "-I$src_pfx_inc"
 cxx.export.libs = $intf_libs
}

Revision 0.18, February 202532 The build2 Packaging Guide

2.4.4 Adjust source buildfile: overview

https://github.com/build2/HOWTO/blob/master/entries/make-header-only-library.md

#liba{foo}: cxx.export.poptions += -DFOO_STATIC
#libs{foo}: cxx.export.poptions += -DFOO_SHARED

For pre-releases use the complete version to make sure they cannot
be used in place of another pre-release or the final version. See
the version module for details on the version.* variable values.
#
if $version.pre_release
 lib{foo}: bin.lib.version = "-$version.project_id"
else
 lib{foo}: bin.lib.version = "-$version.major.$version.minor"

Don’t install private headers.
#
{hxx ixx txx}{*}: install = false

2.4.5 Adjust source buildfile: cleanup

As a first step, let’s remove all the definitions that we don’t need in our library. The two

common pieces of functionality that are often not needed are support for auto-generated

headers (such as config.h generated from config.h.in) and dependencies on other

libraries.

If you don’t have any auto-generated headers, then remove all the assignments and expansions

of the out_pfx_inc and out_pfx_src variables. Here is what the relevant lines in the

above buildfile should look like after this change:

Build options.
#
src_pfx_inc = [dir_path] $src_root/include/
src_pfx_src = [dir_path] $src_root/src/

cxx.poptions =+ "-I$src_pfx_src" "-I$src_pfx_inc"

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$src_pfx_inc"
}

If you do have auto-generated headers, then in the split layout you can remove

out_pfx_inc if you only have private auto-generated headers and out_pfx_src if you

only have public ones.

In the combined layout the single buildfile does not set the *_pfx_* variables. Instead

it uses the src_root and out_root variables directly. For example:

33Revision 0.18, February 2025 The build2 Packaging Guide

2.4.5 Adjust source buildfile: cleanup

Build options.
#
cxx.poptions =+ "-I$out_root" "-I$src_root"

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$out_root" "-I$src_root"
}

To remove support for auto-generated headers in the combined buildfile, simply remove

the corresponding out_root expansions:

Build options.
#
cxx.poptions =+ "-I$src_root"

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$src_root"
}

If you only have private auto-generated headers, then only remove the expansion from

cxx.export.poptions.

If you don’t have any dependencies, then remove all the assignments and expansions of the

intf_libs and impl_libs variables. That is, the following lines in the original build
file:

intf_libs = # Interface dependencies.
impl_libs = # Implementation dependencies.
#import xxxx_libs += libhello%lib{hello}

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx ixx txx cxx}{**} $impl_libs $intf_libs

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$out_pfx_inc" "-I$src_pfx_inc"
 cxx.export.libs = $intf_libs
}

Become just these:

Revision 0.18, February 202534 The build2 Packaging Guide

2.4.5 Adjust source buildfile: cleanup

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx ixx txx cxx}{**}

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$out_pfx_inc" "-I$src_pfx_inc"
}

2.4.6 Adjust source buildfile: dependencies

If you do have dependencies, then let’s handle them now.

Here we will assume dependencies on other libraries, which is the common case. If you have

dependencies on executables, for example, source code generators, see Build-Time Depen

dencies and Linked Configurations on how to handle that. In this case you will also need to

reconfigure your package after adding the corresponding import directives in order to

re-acquire the previously dropped config.import.* values. Make sure to also pass any

configuration variables you specified in Adjust project-wide build system files in build/.

For example:

$ bdep sync -a --disfigure config.libfoo.debug=true

For each library that your package depends on (and which you have added to manifest in

the Add dependencies step), you need to first determine whether it’s an interface or imple

mentation dependency and then import it either into the intf_libs or impl_libs vari

able, respectively.

See Library Exportation and Versioning for background on the interface vs implementation

distinction. But as a quick rule of thumb, if the library you are packaging includes a header

from the dependency library in one of its public headers, then it’s an interface dependency.

Otherwise, it’s an implementation dependency.

Continuing with our libfoo example, as we have established in Add dependencies, it

depends on libasio, libz, and libsqlite3 and let’s say we’ve determined that

libasio is an interface dependency because it’s included from

include/foo/core.hpp while the other two are implementation dependencies because

they are only included from src/. Here is how we would change our buildfile to import

them:

intf_libs = # Interface dependencies.
impl_libs = # Implementation dependencies.
import intf_libs += libasio%lib{asio}
import impl_libs += libz%lib{z}
import impl_libs += libsqlite3%lib{sqlite3}

You can tidy this a bit further if you would like:

35Revision 0.18, February 2025 The build2 Packaging Guide

2.4.6 Adjust source buildfile: dependencies

import intf_libs = libasio%lib{asio}
import impl_libs = libz%lib{z}
import impl_libs += libsqlite3%lib{sqlite3}

If you don’t have any implementation or interface dependencies, you can remove the assign

ment and all the expansions of the corresponding *_libs variable.

Note also that system libraries like -lm, -ldl on UNIX or advapi32.lib,

ws2_32.lib on Windows should not be imported. Instead, they should be listed in the

c.libs or cxx.libs variables. See How do I link a system library for details.

2.4.7 Adjust source buildfile: public headers

With the unnecessary parts of the buildfile cleaned up and dependencies handled, let’s

discuss the common changes to the remaining definitions, going from top to bottom. We start

with the public headers block:

Public headers.
#
pub = [dir_path] ../include/foo/

include $pub

pub_hdrs = $($pub/ pub_hdrs)

lib{foo}: $pub/{$pub_hdrs}

This block gets hold of the list of public headers and makes them prerequisites of the library.

Normally you shouldn’t need to make any changes here. If you need to exclude some headers,

it should be done in the header buildfile in the include/ directory.

In the combined layout the single buildfile does not have such code. Instead, all the

headers are covered by the wildcard pattern in the following block.

2.4.8 Adjust source buildfile: sources, private headers

The next block deals with sources, private headers, and dependencies, if any:

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx ixx txx cxx}{**} $impl_libs $intf_libs

By default it will list all the relevant files as prerequisites of the library, starting from the

directory of the buildfile and including all the subdirectories, recursively (see Name

Patterns for background on wildcard patterns).

If your C++ package doesn’t have any inline or template files, then you can remove the ixx
and txx target types, respectively (which would be parallel to the change made in

root.build; see Adjust project-wide build system files in build/). For example:

Revision 0.18, February 202536 The build2 Packaging Guide

2.4.7 Adjust source buildfile: public headers

https://github.com/build2/HOWTO/blob/master/entries/link-system-library.md

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx cxx}{**} $impl_libs $intf_libs

Source files other than C/C++ (for example, Assembler, Objective-C/C++) are dealt with in

Adjust source buildfile: extra requirements below.

The other common change to this block is the exclusion of certain files or making them condi

tionally included. As an example, let’s say in our libfoo the source subdirectory contains a

bunch of *-test.cpp files which are unit tests and should not be listed as prerequisites of a

library. Here is how we can exclude them:

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx cxx}{** -**-test} $impl_libs $intf_libs

Let’s also assume our libfoo contains impl-win32.cpp and impl-posix.cpp which

provide alternative implementations of the same functionality for Windows and POSIX and

therefore should only be included as prerequisites on the respective platforms. Here is how we

can handle that:

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx cxx}{** -impl-win32 -impl-posix -**-test}
lib{foo}: cxx{impl-win32}: include = ($cxx.target.class == ’windows’)
lib{foo}: cxx{impl-posix}: include = ($cxx.target.class != ’windows’)
lib{foo}: $impl_libs $intf_libs

There are two nuances in the above example worth highlighting. Firstly, we have to exclude

the files from the wildcard pattern before we can conditionally include them. Secondly, we

have to always link libraries last. In particular, the following is a shorter but an incorrect

version of the above:

lib{foo}: {hxx cxx}{** -impl-win32 -impl-posix -**-test} \
 $impl_libs $intf_libs
lib{foo}: cxx{impl-win32}: include = ($cxx.target.class == ’windows’)
lib{foo}: cxx{impl-posix}: include = ($cxx.target.class != ’windows’)

You may also be tempted to use the if directive instead of the include variable for condi

tional prerequisites. For example:

if ($cxx.target.class == ’windows’)
 lib{foo}: cxx{impl-win32}
else
 lib{foo}: cxx{impl-posix}

This would also be incorrect. For background and details, see How do I keep the build graph

configuration-independent?

37Revision 0.18, February 2025 The build2 Packaging Guide

2.4.8 Adjust source buildfile: sources, private headers

https://github.com/build2/HOWTO/blob/master/entries/keep-build-graph-config-independent.md
https://github.com/build2/HOWTO/blob/master/entries/keep-build-graph-config-independent.md

2.4.9 Adjust source buildfile: build and export options

The next two blocks are the build and export options, which we will discuss together:

Build options.
#
out_pfx_inc = [dir_path] $out_root/include/
src_pfx_inc = [dir_path] $src_root/include/
out_pfx_src = [dir_path] $out_root/src/
src_pfx_src = [dir_path] $src_root/src/

cxx.poptions =+ "-I$out_pfx_src" "-I$src_pfx_src" \
 "-I$out_pfx_inc" "-I$src_pfx_inc"

#obja{*}: cxx.poptions += -DFOO_STATIC_BUILD
#objs{*}: cxx.poptions += -DFOO_SHARED_BUILD

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$out_pfx_inc" "-I$src_pfx_inc"
 cxx.export.libs = $intf_libs
}

#liba{foo}: cxx.export.poptions += -DFOO_STATIC
#libs{foo}: cxx.export.poptions += -DFOO_SHARED

The build options are in effect when the library itself is being built and the exported options

are propagated to the library consumers (see Library Exportation and Versioning for back

ground on exported options). For now we will ignore the commented out lines that add

-DFOO_STATIC* and -DFOO_SHARED* macros – they are for symbol exporting and we

will discuss this topic separately.

If the library you are packaging only relied on platform-independent APIs, then chances are

you won’t need to change anything here. On the other hand, if it does anything plat

form-specific, then you will most likely need to add some options.

As discussed in the Output Directories and Scopes section of the build system introduction,

there is a number of variables that are used to specify compilation and linking options, such as

*.poptions (cxx.poptions in the above example), *.coptions, etc. The below

table shows all of them with their rough make equivalents in the third column:

*.poptions preprocess CPPFLAGS
*.coptions compile CFLAGS/CXXFLAGS
*.loptions link LDFLAGS
*.aoptions archive ARFLAGS
*.libs system libraries LIBS/LDLIBS

The recommended approach here is to study the upstream build system and copy custom

compile/link options to the appropriate build2 variables. Note, however, that doing it

thoughtlessly/faithfully by copying all the options may not always be a good idea. See Which

C/C++ compile/link options are OK to specify in a project’s buildfile? for the guidelines.

Revision 0.18, February 202538 The build2 Packaging Guide

2.4.9 Adjust source buildfile: build and export options

https://github.com/build2/HOWTO/blob/master/entries/compile-options-in-buildfile.md
https://github.com/build2/HOWTO/blob/master/entries/compile-options-in-buildfile.md

If you are packaging a library that includes a large number of optional features, it may be

unclear which of them would make sense to enable by default. The notorious example of this

situation is libsqlite3 which provides hundreds of preprocessor macros to enable or tune

various aspects of its functionality.

The recommended approach in cases like this is to study the configuration of such a library in

distributions like Debian and Fedora and use the same defaults. In particular, this will allow

us to substitute the build2 package with the system-installed version.

Oftentimes, custom options must only be specified for certain target platforms or when using

a certain compiler. While build2 provides a large amount of information to identify the

build configuration as well as more advanced buildfile language mechanisms (such as

Pattern Matching) to make sense of it, this is a large topic for which we refer you to The

build2 Build System manual. Additionally, github.com/build2-packaging now contains a

large number of packages that you can study and search for examples.

While exporting preprocessor macros to communicate configuration is a fairly common tech

nique, it has a number of drawbacks and limitations. Specifically, a large number of such

macros will add a lot of noise to the consumer’s compilation command lines (especially if

multiple libraries indulge in this). Plus, the information conveyed by such macros is limited to

simple values and is not easily accessible in consumer buildfiles.

To overcome these drawbacks and limitations, build2 provides a mechanism for conveying

metadata with C/C++ libraries (and executables). See, How do I convey additional informa

tion (metadata) with executables and C/C++ libraries? for details.

Note that outright replacing the preprocessor macros with metadata can be done if this infor

mation is only used by the library consumers. In other words, if the library’s public headers

rely on the presence of such macros, then we have no choice but to export them, potentially

also providing the metadata so that this information is easily accessible from buildfiles.

Let’s consider a representative example based on our libfoo to get a sense of what this

normally looks like as well as to highlight a few nuances. We will assume our libfoo
requires either the FOO_POSIX or FOO_WIN32 macro to be defined during the build in

order to identify the target platform. Additionally, extra features can be enabled by defining

FOO_EXTRAS, which should be done both during the build and for consumption (so this

macro must also be exported). Next, this library requires the -fno-strict-aliasing
compile option for the GCC-class compilers (GCC, Clang, etc). Finally, we need to link

pthread on POSIX and ws2_32.lib on Windows. This is how we would work all this

into the above fragment:

Build options.
#
out_pfx_inc = [dir_path] $out_root/include/
src_pfx_inc = [dir_path] $src_root/include/
out_pfx_src = [dir_path] $out_root/src/
src_pfx_src = [dir_path] $src_root/src/

cxx.poptions =+ "-I$out_pfx_src" "-I$src_pfx_src" \
 "-I$out_pfx_inc" "-I$src_pfx_inc"

39Revision 0.18, February 2025 The build2 Packaging Guide

2.4.9 Adjust source buildfile: build and export options

https://github.com/build2-packaging/sqlite
https://github.com/build2-packaging
https://github.com/build2/HOWTO/blob/master/entries/convey-additional-information-with-exe-lib.md
https://github.com/build2/HOWTO/blob/master/entries/convey-additional-information-with-exe-lib.md

cxx.poptions += -DFOO_EXTRAS

if ($cxx.target.class == ’windows’)
 cxx.poptions += -DFOO_WIN32
else
 cxx.poptions += -DFOO_POSIX

#obja{*}: cxx.poptions += -DFOO_STATIC_BUILD
#objs{*}: cxx.poptions += -DFOO_SHARED_BUILD

if ($cxx.class == ’gcc’)
 cxx.coptions += -fno-strict-aliasing

switch $cxx.target.class, $cxx.target.system
{
 case ’windows’, ’mingw32’
 cxx.libs += -lws2_32
 case ’windows’
 cxx.libs += ws2_32.lib
 default
 cxx.libs += -pthread
}

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$out_pfx_inc" "-I$src_pfx_inc" -DFOO_EXTRAS
 cxx.export.libs = $intf_libs
}

#liba{foo}: cxx.export.poptions += -DFOO_STATIC
#libs{foo}: cxx.export.poptions += -DFOO_SHARED

There are a few nuances in the above code worth keeping in mind. Firstly, notice that we

append (rather than assign) to all the non-export variables (*.poptions, *.coptions,

*.libs). This is because they may already contain some values specified by the user with

their config.*.* counterparts. On the other hand, the *.export.* variables are

assigned.

Secondly, the order in which we append to the variables is important for the value to accumu

late correctly. You want to first append all the scope-level values, then target

type/pattern-specific, and finally any target-specific; that is, from more general to more

specific (see Buildfile Language for background). To illustrate this point, let’s say in our

libfoo, the FOO_POSIX or FOO_WIN32 macro are only necessary when compiling

util.cpp. Below would be the correct order of assigning to cxx.poptions:

Revision 0.18, February 202540 The build2 Packaging Guide

2.4.9 Adjust source buildfile: build and export options

cxx.poptions =+ "-I$out_pfx_src" "-I$src_pfx_src" \
 "-I$out_pfx_inc" "-I$src_pfx_inc"

cxx.poptions += -DFOO_EXTRAS

#obja{*}: cxx.poptions += -DFOO_STATIC_BUILD
#objs{*}: cxx.poptions += -DFOO_SHARED_BUILD

if ($cxx.target.class == ’windows’)
 {obja objs}{util}: cxx.poptions += -DFOO_WIN32
else
 {obja objs}{util}: cxx.poptions += -DFOO_POSIX

Note that target-specific *.poptions and *.coptions must be specified on the object

file targets while *.loptions and *.libs – on the library or executable targets.

2.4.10 Adjust source buildfile: symbol exporting

Let’s now turn to a special sub-topic of the build and export options that relates to the shared

library symbol exporting. To recap, a shared library on Windows must explicitly specify the

symbols (functions and global data) that it wishes to make accessible by its consumers

(executables and other shared libraries). This can be achieved in three different ways: The

library can explicitly mark in its source code the names whose symbols should be exported.

Alternatively, the library can provide a .def file to the linker that lists the symbols to be

exported. Finally, the library can request the automatic exporting of all symbols, which is the

default semantics on non-Windows platforms. Note that the last two approaches only work for

exporting functions, not data, unless special extra steps are taken by the library consumers.

Let’s discuss each of these approaches in the reverse order, that is, starting with the automatic

symbol exporting.

The automatic symbol exporting is implemented in build2 by generating a .def file that

exports all the relevant symbols. It requires a few additional definitions in our buildfile
as described in Automatic DLL Symbol Exporting. You can automatically generate the neces

sary setup with the auto-symexport bdep-new sub-option.

Using a custom .def file to export symbols is fairly straightforward: simply list it as a

prerequisite of the library and it will be automatically passed to the linker when necessary. For

example:

Private headers and sources as well as dependencies.
#
lib{foo}: {hxx cxx}{**} $impl_libs $intf_libs def{foo}

Some third-party projects automatically generate their .def file. In this case you can try to

re-create the same generation in the buildfile using an ad hoc recipe (or the in or auto
conf build system modules). If that doesn’t look possible (for example, if the generation

logic is complex and is implemented in something like Perl or Python), then you can try your

luck with automatic symbol exporting. Failing that, the only remaining option is to use a

pre-generated .def file in the build2 build.

41Revision 0.18, February 2025 The build2 Packaging Guide

2.4.10 Adjust source buildfile: symbol exporting

https://github.com/build2/libbuild2-autoconf
https://github.com/build2/libbuild2-autoconf

The last approach is to explicitly specify in the source code which symbols must be exported

by marking the corresponding declarations with __declspec(dllexport) during the

library build and __declspec(dllimport) during the library use. This is commonly

achieved with a macro, customarily called *_EXPORT or *_API, which is defined to one of

the above specifiers based on whether static or shared library is being built or is being

consumed, which, in turn, is also normally signaled with a few more macros, such as

*_BUILD_DLL and *_USE_STATIC.

Because this approach requires extensive changes to the source code, you will normally only

use it in your build2 build if it is already used in the upstream build.

In build2 you can explicitly signal any of the four situations (shared/static, built/consumed)

by uncommenting and adjusting the following four lines in the build and export options

blocks:

Build options.
#

...

#obja{*}: cxx.poptions += -DFOO_STATIC_BUILD
#objs{*}: cxx.poptions += -DFOO_SHARED_BUILD

Export options.
#

...

#liba{foo}: cxx.export.poptions += -DFOO_STATIC
#libs{foo}: cxx.export.poptions += -DFOO_SHARED

As an example, let’s assume our libfoo defines in one of its headers the FOO_EXPORT
macro based on the FOO_BUILD_DLL (shared library is being build) and

FOO_USE_STATIC (static library is being used) macros that it expects to be appropriately

defined by the build system. This is how we would modify the above fragment to handle this

setup:

Build options.
#

...

objs{*}: cxx.poptions += -DFOO_BUILD_DLL

Export options.
#

...

liba{foo}: cxx.export.poptions += -DFOO_USE_STATIC

Revision 0.18, February 202542 The build2 Packaging Guide

2.4.10 Adjust source buildfile: symbol exporting

2.4.11 Adjust source buildfile: shared library version

The final few lines in the above buildfile deal with shared library binary (ABI) version

ing:

For pre-releases use the complete version to make sure they cannot
be used in place of another pre-release or the final version. See
the version module for details on the version.* variable values.
#
if $version.pre_release
 lib{foo}: bin.lib.version = "-$version.project_id"
else
 lib{foo}: bin.lib.version = "-$version.major.$version.minor"

The bdep-new-generated setup arranges for the platform-independent versioning where the

package’s major and minor version components are embedded into the shared library binary

name (and soname) under the assumption that only patch versions are ABI-compatible.

The two situations where you would want to change this are when the above assumption does

not hold and/or when upstream provides platform-specific shared library versions which you

would like to re-create in your build2 build. See Library Exportation and Versioning for

background and details.

2.4.12 Adjust source buildfile: executables

If instead of a library you are packaging an executable, then, as mentioned earlier, it will most

likely be a combined layout with a single buildfile. This buildfile will also be much

simpler compared to the library’s. For example, give the following bdep-new command:

$ bdep new --package \
 --lang c++ \
 --type exe,no-subdir,prefix=foo,export-stub \
 foo

The resulting source buildfile will look like this:

libs =
#import libs += libhello%lib{hello}

exe{foo}: {hxx ixx txx cxx}{**} $libs testscript

out_pfx = [dir_path] $out_root/foo/
src_pfx = [dir_path] $src_root/foo/

cxx.poptions =+ "-I$out_pfx" "-I$src_pfx"

If the executable doesn’t have any inline/template/header files, then you can remove the

ixx/txx/hxx target types, respectively (which would be parallel to the change made in

root.build; see Adjust project-wide build system files in build/). For example:

43Revision 0.18, February 2025 The build2 Packaging Guide

2.4.11 Adjust source buildfile: shared library version

exe{foo}: {hxx cxx}{**} $libs testscript

If the source code includes its own headers with the "" style inclusion (or doesn’t have any

headers), then we can also get rid of out_pfx and src_pfx. For example:

libs =
#import libs += libhello%lib{hello}

exe{foo}: {hxx ixx txx cxx}{**} $libs testscript

Unfortunately, it’s not uncommon for projects that provide both a library and an executable,

for the executable source code to include public and/or private library headers with the rela

tive "" style inclusion. For example:

#include "../../libfoo/include/foo/util.hpp"
#include "../../libfoo/src/impl.hpp"

This approach won’t work in build2 since the two packages may end up in different direc

tories or the library could even be installed. There are two techniques that can be used to work

around this issue (other than patching the upstream source code).

For public headers we can provide, in the appropriate places within the executable package,

"thunk headers" with the same names as public headers that simply include the corresponding

public header from the library using the <> style inclusion.

For private headers we can provide, again in the appropriate places within the executable

package, our own symlinks for a subset of private headers. Note that this will only work if the

use of private headers within the executable does not depend on any symbols that are not

exported by the library (failing that, the executable will have to always link to the static

variant of the library).

For a real example of both of these techniques, see the zstd package repository.

Dealing with dependencies in executables is similar to libraries except that here we don’t have

the interface/implementation distinction; see the Adjust source buildfile: dependencies

step. For example:

import libs = libfoo%lib{foo}

exe{foo}: {hxx ixx txx cxx}{**} $libs testscript

Likewise, dealing with build options in executables is similar to libraries except that here we

have no export options; see the Adjust source buildfile: build and export options step.

If the executable can plausibly be used in a build, then it’s recommended to add build2

metadata as describe in How do I convey additional information (metadata) with executables

and C/C++ libraries? See also Modifying upstream source code with C/C++ preprocessor on

how to do it without physically modifying upstream source code. See the zstd package

repository for a real example of doing this.

Revision 0.18, February 202544 The build2 Packaging Guide

2.4.12 Adjust source buildfile: executables

https://github.com/build2-packaging/zstd
https://github.com/build2/HOWTO/blob/master/entries/convey-additional-information-with-exe-lib.md
https://github.com/build2/HOWTO/blob/master/entries/convey-additional-information-with-exe-lib.md
https://github.com/build2-packaging/zstd

We will discuss the testscript prerequisite in the Make smoke test: executables step

below.

2.4.13 Adjust source buildfile: extra requirements

The changes discussed so far should be sufficient to handle a typical library or executable that

is written in C and/or C++ and is able to handle platform differences with the preprocessor

and compile/link options. However, sooner or later you will run into a more complex library

that may use additional languages, require more elaborate platform detection, or use addi

tional functionality, such as support for source code generators. The below list provides point

ers to resources that cover the more commonly encountered additional requirements.

The in build system module

Use to process config.h.in (or other .in files) that don’t require Autoconf-style

platform probing (HAVE_* options).

The autoconf build system module

Use to process config.h.in (or their CMake/Meson variants) that require Auto

conf-style platform probing (HAVE_* options) or CMake/Meson-specific substitution

syntax (#cmakedefine, etc).

Objective-C Compilation and Objective-C++ Compilation

Use to compile Objective-C (.m) or Objective-C++ (.mm) source files.

Assembler with C Preprocessor Compilation

Use to compile Assembler with C Preprocessor (.S) source files.

Implementing Unit Testing

Use if upstream has tests (normally unit tests) in the source subdirectory.

Build-Time Dependencies and Linked Configurations

Use if upstream relies on source code generators, such as lex and yacc.

The build2 HOWTO

See the build2 HOWTO article collection for more unusual requirements.

2.4.14 Test library build

At this point our library should be ready to build, at least in theory. While we cannot build and

test the entire package before adjusting the generated tests/ subproject (the subject of the

next step), we can try to build just the library and, if it has any unit tests in the source subdi

rectory, even run some tests.

45Revision 0.18, February 2025 The build2 Packaging Guide

2.4.13 Adjust source buildfile: extra requirements

https://github.com/build2/libbuild2-autoconf
https://cppget.org/reflex
https://cppget.org/byacc
https://github.com/build2/HOWTO/

If the library is header only, there won’t be anything to build unless there are unit tests. Still,

you may want to continue with this exercise to detect any syntactic mistakes in the build
files, etc.

To build only a specific subdirectory of our package, we use the build system directly (contin

uing with our libfoo example):

$ cd libfoo/src/ # Change to the source subdirectory.
$ b update

If there are any issues, try to fix them and then build again. Once the library builds and if it

has unit tests, you can try to run them:

$ b test

It also makes sense to test the installation and see if anything is off (such as private headers

being installed):

$ rm -rf /tmp/install
$ b install config.install.root=/tmp/install

Once the library builds, it makes sense to commit our changes for easier rollbacks:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Adjust source subdirectory buildfiles"

2.5 Make smoke test

With the library build sorted, we need tests to make sure the result is actually functional. As

discussed earlier, it is recommended to start with a simple "smoke test", make sure that works,

and then replace it with upstream tests. However, if upstream tests look simple enough, you

can skip the smoke test. For example, if upstream has all its tests in a single source file and

the way it is built doesn’t look too complicated, then you can just use that source file in place

of the smoke test.

If upstream has no tests, then the smoke test will have to stay. A library can only be published

if it has at least one test.

It is also recommended to have the smoke test if upstream tests are in a separate package. See

How do I handle tests that have extra dependencies? for background and details.

If instead of a library you are packaging an executable, you can skip directly to Make smoke

test: executables.

To recap, the bdep-new-generated tests/ subdirectory looks like this (continuing with

our libfoo example):

Revision 0.18, February 202546 The build2 Packaging Guide

2.5 Make smoke test

https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md

libfoo/
|-- ...
·-- tests/
 |-- build/
 |Â Â |-- bootstrap.build
 |Â Â ·-- root.build
 |-- basics/
 |Â Â |-- driver.cpp
 |Â Â ·-- buildfile
 ·-- buildfile

The tests/ subdirectory is a build system subproject, meaning that it can be built indepen

dently, for example, to test the installed version of the library (see Testing for background). In

particular, this means it has the build/ subdirectory with project-wide build system files,

the same as the library. The basics/ subdirectory contains the generated test, which is what

we will be turning into a smoke test. The subproject root buildfile rarely needs changing.

2.5.1 Adjust project-wide build system files in tests/build/

Review and adjust the generated bootstrap.build and root.build (there will be no

export.build) similar to the Adjust project-wide build system files in build/ step.

Here the only change you would normally make is in root.build and which is to drop the

assignment of extensions for target types that are not used in tests.

2.5.2 Convert generated test to library smoke test

The basics/ subdirectory contains the driver.cpp source file that implements the test

and buildfile that builds it. You can rename both the test subdirectory (basics/) and

the source file driver.cpp, for example, if you are going with the upstream tests directly.

You can also add more tests by simply copying basics/.

The purpose of a smoke test is to make sure the library’s public headers can be included

(including in the installed case, no pun intended), it can be linked, and its basic functionality

works.

To achieve this, we modify driver.cpp to include the library’s main headers and call a

few functions. For example, if the library has the initialize/deinitialize type of functions, those

are good candidates to call. If the library is not header-only, make sure that the smoke test

calls at least one non-inline/template function to test symbol exporting.

Make sure that your test includes the library’s public headers the same way as would be done

by the library consumers.

Continuing with our libfoo example, this is what its smoke test might look like:

47Revision 0.18, February 2025 The build2 Packaging Guide

2.5.1 Adjust project-wide build system files in tests/build/

#include <foo/core.hpp>
#include <foo/util.hpp>

#undef NDEBUG
#include <cassert>

int main ()
{
 foo::context* c (foo::init (0 /* flags */));
 assert (c != nullptr);
 foo::deinit (c);
}

The C/C++ assert() macro is often adequate for simple tests and does not require extra

dependencies. But see How do I correctly use C/C++ assert() in tests?

The test buildfile is pretty simple:

import libs = libfoo%lib{foo}

exe{driver}: {hxx ixx txx cxx}{**} $libs testscript{**}

If you have adjusted the library target name (lib{foo}) in the source subdirectory build
file, then you will need to make the corresponding change in the import directive here.

You may also want to tidy it up by removing unused prerequisite types. For example:

import libs = libfoo%lib{foo}

exe{driver}: {hxx cxx}{**} $libs

2.5.3 Make smoke test: executables

If instead of a library we are packaging an executable, then instead of the tests/ subproject

we get the testscript file in the source subdirectory (see Adjust source buildfile:

executables for a refresher). This file can be used to write one or more tests that exercise our

executable (see Testing for background).

How exactly to test any given executable depends on its functionality. For instance, for a

compression utility we could write a roundtrip test that first compresses some input, then

decompresses it, and finally compares the result to the original. For example (taken from the

zstd package repository):

: roundtrip
:
echo ’test content’ | $* -zc | $* -dc >’test content’

On the other hand, for an executable that is a source code generator, proper testing would

involve a separate tests package that has a build-time dependency on the executable and that

exercises the generated code (see How do I handle tests that have extra dependencies? for

background and details). See the thrift package repository for an example of this setup.

Revision 0.18, February 202548 The build2 Packaging Guide

2.5.3 Make smoke test: executables

https://github.com/build2/HOWTO/blob/master/entries/use-assert-in-tests.md
https://github.com/build2-packaging/zstd
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2-packaging/thrift/tree/0.17

If the executable provides a way to query its version, one test that you should always be able

to write, and which can serve as a last resort smoke test, is the version check. For example:

: version
:
$* --version >>~"/EOO/"
/.*$(version.major)\.$(version.minor)\.$(version.patch).*/
EOO

See also How do I sanitize the execution of my tests?

2.5.4 Test locally

With the smoke test ready, we can finally do some end-to-end testing of our library build. We

will start with doing some local testing to catch basic mistakes and then do the full CI to

detect any platform/compiler-specific issues.

First let’s run the test in the default build configuration by invoking the build system directly

(see Getting Started Guide for background on default configurations):

$ cd libfoo/tests/ # Change to the tests/ subproject.
$ b test

If there are any issues (compile/link errors, test failures), try to address them and re-run the

test.

Once the library builds in the default configuration and the result passes the tests, you can do

the same for all the build configurations, in case you have initialized your library in several:

$ bdep test -a

2.5.5 Test locally: installation

Once the development build works, let’s also test the installed version of the library. In partic

ular, this makes sure that the public headers are installed in a way that is compatible with how

they are included by our test (and would be included by the library consumers). To test this

we first install the library into a temporary directory:

$ cd libfoo/ # Change to the package root.
$ rm -rf /tmp/install
$ b install config.install.root=/tmp/install

Next we build just the tests/ subproject out of source and arranging for it to find the

installed library (see Output Directories and Scopes for background on the out of source build

syntax):

$ cd libfoo/ # Change to the package root.
$ b test: tests/@/tmp/libfoo-tests-out/ \
 config.cc.loptions=-L/tmp/install/lib \
 config.bin.rpath=/tmp/install/lib

49Revision 0.18, February 2025 The build2 Packaging Guide

2.5.4 Test locally

https://github.com/build2/HOWTO/blob/master/entries/sanitize-test-execution.md

The equivalent MSVC command line would be:

> b install config.install.root=c:\tmp\install

> set "PATH=c:\tmp\install\bin;%PATH%"
> b test: tests\@c:\tmp\libfoo-tests-out\^
 config.cc.loptions=/LIBPATH:c:\tmp\install\lib

It is a good idea to look over the installed files manually and make sure there is nothing unex

pected, for example, missing or extraneous files.

Once done testing the installed case, let’s clean things up:

$ rm -r /tmp/install /tmp/libfoo-tests-out

2.5.6 Test locally: distribution

Another special case worth testing is the preparation of the source distribution (see Distribut

ing for background). This, in particular, is how your package will be turned into the source

archive for publishing to cppget.org. Here we are primarily looking for missing files. As a

bonus, this will also allow us to test the in source build. First we distribute our package to a

temporary directory (again using the default configuration and the build system directly):

$ cd libfoo/ # Change to the package root.
$ b dist config.dist.root=/tmp/dist config.dist.uncommitted=true

The result will be in the /tmp/dist/libfoo-<version>/ directory which should

resemble our libfoo/ package but without files like .gitignore. Next we build and test

the distribution in source:

$ cd /tmp/dist/libfoo-<version>/
$ b configure config.cxx=g++
$ b update
$ b test

If your package has dependencies that you import in your buildfile, then the above

configure operation will most likely fail because such dependencies cannot be found (it

may succeed if they are available as system-installed). The error message will suggest speci

fying the location of each dependency with the config.import.* variable. You can fix

this by setting each such config.import.* to the location of the default build configura

tion (created in the Initialize package in build configurations step) which should contain all

the necessary dependencies. Simply re-run the configure operation until you have discov

ered and specified all the necessary config.import.* variables, for example:

$ b configure config.cxx=g++ \
 config.import.libz=.../foo-gcc \
 config.import.libasio=.../foo-gcc \
 config.import.libsqlite3=.../foo-gcc

It is a good idea to look over the distributed files manually and make sure there is nothing

missing or extraneous.

Revision 0.18, February 202550 The build2 Packaging Guide

2.5.6 Test locally: distribution

https://cppget.org/

Once done testing the distribution, let’s clean things up:

$ rm -r /tmp/dist

2.5.7 Commit and test with CI

With local testing complete, let’s commit our changes and submit a remote CI job to test our

library on all the major platforms and with all the major compilers:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Add smoke test"
$ git push -u

$ bdep ci

The result of the bdep-ci(1) command is a link where you can see the status of the builds.

Make sure to wait until there are no more unbuilt configurations (that is, the number of entries

with the <unbuilt> or building result is 0).

If any builds fail, view the logs to determine the cause, try to fix it, commit your fix, and CI

again.

It is possible that upstream does not support some platforms or compilers. For example, it’s

common for smaller projects not to bother with supporting "secondary" compilers, such as

MinGW GCC on Windows or Homebrew GCC on Mac OS.

If upstream expressly does not support some platform or compiler, it’s probably not worth

spending time and energy trying to support it in the package. Most likely it will require

changes to upstream source code and that is best done upstream rather than in the package

(see Don’t try to fix upstream issues in the package for background). In this case you would

want to exclude these platforms/compilers from the CI builds using the builds package

manifest value.

The other common cause of a failed build is a newer version of a compiler or platform that

breaks upstream. In this case there are three options: Ideally you would want to fix this in

upstream and have a new version released. Failing that, you may want to patch the upstream

code to fix the issues, especially if this is one of the major platforms and/or primary compilers

(see How do I patch upstream source code? for details). Finally, you can just leave the build

failing with the expectation that it will be fixed in the next upstream version. Note that in this

case you should not exclude the failing build from CI.

2.6 Replace smoke test with upstream tests

With the smoke test working we can now proceed with replacing it with the upstream tests.

51Revision 0.18, February 2025 The build2 Packaging Guide

2.6 Replace smoke test with upstream tests

2.6.1 Understand how upstream tests work

While there are some commonalities in how C/C++ libraries are typically built, when it comes

to tests there is unfortunately little common ground in how they are arranged, built, and

executed. As a result, the first step in dealing with upstream tests is to study the existing build

system and try to understand how they work.

If upstream tests prove incomprehensible (which is unfortunately not uncommon) and the

only options you see are to go with just the smoke test or to give up, then go with just the

smoke test. In this case it’s a good idea to create an issue in the package repository mention

ing that upstream tests are still a TODO.

If instead of a library you are packaging an executable, then whether the below steps will

apply depends on the functionality of the executable.

In particular, testing source code generators would normally involve exercising the generated

code, in which case the following will largely apply, though in this case the tests would need

to be placed into a separate tests package that has a build-time dependency on the executable

(see How do I handle tests that have extra dependencies? for background and details). In fact,

if a source code generator is accompanied by a runtime library, then the tests will normally

exercise them together (though a runtime library might also have its own tests). See the

thrift package repository for an example of this setup.

To get you started with analyzing the upstream tests, below are some of the questions you

would likely need answered before you can proceed with the conversion:

Are upstream tests unit tests or integration tests?

While the distinction is often fuzzy, for our purposes the key differentiator between unit

and integration tests is which API they use: integration tests only use the library’s public

API while unit tests need access to the implementation details.

Normally (but not always), unit tests will reside next to the library source code since they

need access to more than just the public headers and the library binary (private headers,

individual object files, utility libraries, etc). While integration tests are normally (but

again not always) placed into a separate subdirectory, usually called tests or test.

If the library has unit tests, then refer to Implementing Unit Testing for background on

how to handle them in build2.

If the library has integration tests, then use them to replace (or complement) the smoke

test.

If the library has unit tests but no integration tests, then it is recommended to keep the

smoke test since that’s the only way the library will be tested via its public API.

Revision 0.18, February 202552 The build2 Packaging Guide

2.6.1 Understand how upstream tests work

https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2-packaging/thrift/tree/0.17

Do upstream tests use an external testing framework?

Oftentimes a C++ library will use an external testing framework to implement tests.

Popular choices include catch2, gtest, doctest, and libboost-test.

If a library uses such an external testing framework, then it is recommended to factor

tests into a separate package in order to avoid making the library package depend on the

testing framework (which is only required during testing). See How do I handle tests that

have extra dependencies? for details.

Sometimes you will find that upstream bundles the source code of the testing framework

with their tests. This is especially common with catch2. If that’s the case, it is strongly

recommended that you "unbundle" it by making it a proper external dependency. See

Don’t bundle dependencies for background.

Are upstream tests in a single or multiple executables?

It’s not unusual for libraries to have a single test executable that runs all the test cases.

This is especially common if a C++ testing framework is used. In this case it is natural to

replace the contents of the smoke test with the upstream source code, potentially renam

ing the test subdirectory (basics/) to better match upstream naming.

If upstream has multiple test executables, then they could all be in a single test subdirec

tory (potentially reusing some common bits) or spread over multiple subdirectories. In

both cases it’s a good idea to follow the upstream structure unless you have good reasons

to deviate. In the former case (all executables in the same subdirectory), you can

re-purpose the smoke test subdirectory. In the latter case (each executable in a separate

subdirectory) you can make copies of the smoke test subdirectory.

Do upstream tests use an internal utility library?

If there are multiple test executables and they need to share some common functionality,

then it’s not unusual for upstream to place such functionality into a static library and then

link it to each test executable. In build2 such an internal library is best represented

with a utility library (see Implementing Unit Testing for details). See the following

section for an example.

Are upstream tests well behaved?

Unfortunately, it’s not uncommon for upstream tests not to behave well, such as to write

diagnostics to stdout instead of stderr, create temporary files without cleaning them

up, or assume presence of input files in the current working directory. For details on how

to deal with such situations see How do I sanitize the execution of my tests?

53Revision 0.18, February 2025 The build2 Packaging Guide

2.6.1 Understand how upstream tests work

https://cppget.org/catch2
https://cppget.org/gtest
https://cppget.org/doctest
https://cppget.org/libboost-test
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2/HOWTO/blob/master/entries/sanitize-test-execution.md

2.6.2 Convert smoke test to upstream tests

Once you have a good grasp of how upstream tests work, convert or replace the smoke test

with the upstream tests. If upstream has multiple test executables, you may want to deal with

one test at a time, making sure that it passes before moving to the next one.

It’s normally a good idea to use the smoke test buildfile as a starting point for upstream

tests. To recap, the smoke test buildfile for our libfoo example ended up looking like

this:

import libs = libfoo%lib{foo}

exe{driver}: {hxx cxx}{**} $libs

At a minimum you will most likely need to change the name of the executable to match

upstream. If you need to build multiple executables in the same directory, then it’s probably

best to get rid of the name pattern for the source files and specify the prerequisite names

explicitly, for example:

import libs = libfoo%lib{foo}

./: exe{test1}: cxx{test1} $libs

./: exe{test2}: cxx{test2} $libs

If you have a large number of such test executables, then a for-loop might be a more scal

able option:

import libs = libfoo%lib{foo}

for src: cxx{test*}
 ./: exe{$name($src)}: $src $libs

If the upstream tests have some common functionality that is used by all the test executables,

then it is best placed into a utility library. For example:

import libs = libfoo%lib{foo}

./: exe{test1}: cxx{test1} libue{common}

./: exe{test2}: cxx{test2} libue{common}

libue{common}: {hxx cxx}{common} $libs

2.6.3 Test locally

With the upstream tests ready, we re-do the same end-to-end testing as we did with the smoke

test:

Test locally

Test locally: installation

Test locally: distribution

Revision 0.18, February 202554 The build2 Packaging Guide

2.6.2 Convert smoke test to upstream tests

2.6.4 Commit and test with CI

With local testing complete, we commit our changes and submit a remote CI job. This step is

similar to what we did for the smoke test but this time we are using the upstream tests:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Add upstream tests"
$ git push

$ bdep ci

2.7 Add upstream examples, benchmarks, if any

If the upstream project provides examples and/or benchmarks and you wish to add them to the

build2 build (which is not strictly necessary for the build2 package to be usable), then

now is a good time to do that.

As was mentioned in Review and test auto-generated buildfile templates, the recom

mended approach is to copy the tests/ subproject (potentially from the commit history

before the smoke test was replaced with the upstream tests) and use that as a starting point for

examples and/or benchmarks. Do not forget to add the corresponding entry in the root

buildfile.

Once that is done, follow the same steps as in Replace smoke test with upstream tests to add

upstream examples/benchmarks and test the result.

2.8 Adjust root files (buildfile, manifest, etc)

The last few files that we need to review and potentially adjust are the root buildfile,

package manifest, and PACKAGE-README.md.

2.8.1 Adjust root buildfile

The main function of the root buildfile is to pull in all the subdirectories that need build

ing plus list targets that are usually found in the root directory of a project, typically

README.md, LICENSE, etc. This is what the generated root buildfile looks like for our

libfoo project assuming we have symlinked README.md, LICENSE, and NEWS from

upstream in the Create final package step:

./: {*/ -build/} \
 doc{README.md PACKAGE-README.md NEWS} \
 legal{LICENSE} manifest

Don’t install tests.
#
tests/: install = false

55Revision 0.18, February 2025 The build2 Packaging Guide

2.7 Add upstream examples, benchmarks, if any

If the upstream project provides any other documentation (detailed change logs, contributing

guidelines, etc) or legal files (alternative licenses, list of authors, code of conduct, etc), then

you may want to symlink and list them as the doc{} and legal{} prerequisites, respec

tively.

If you are packaging an executable and it provides a man page, then it can also be listed in the

root buildfile. For example, if the man page file is called foo.1:

./: ... man1{foo}

One file you don’t need to list is INSTALL (or equivalent) which normally contains the

installation instructions for the upstream build system. In the build2 package of a

third-party project the PACKAGE-README.md file serves this purpose (see Adjust

PACKAGE-README.md for details).

2.8.2 Adjust root buildfile: other subdirectories

If the upstream project has other subdirectories that makes sense to include into the build2
package, then now is a good time to take care of that. The most common such case will be

extra documentation (besides the root README), typically in a subdirectory called doc/,

docs/, or documentation/.

The standard procedure for handling such subdirectories will be to symlink the relevant files

(or the entire subdirectory) and then list the files as prerequisites. For this last step, there are

two options: we can list the files directly in the root buildfile or we can create a separate

buildfile in the subdirectory.

If symlinking entire subdirectories, don’t forget to also list them in .gitattributes if

you want your package to be usable from the git repository directly on Windows. See

Symlinks and Windows for details.

Let’s examine each approach using our libfoo as an example. We will assume that the

upstream project contains the docs/ subdirectory with additional *.md files that document

the library’s API. It would make sense to include them into the build2 package.

Listing the subdirectory files directly in the root buildfile works best for simple cases,

where you have a bunch of static files that don’t require any special provisions, such as

customizations to their installation locations. In this case we can symlink the entire docs/

subdirectory:

$ cd libfoo/ # Change to the package root.
$ ln -s ../upstream/docs ./

The adjustments to the root buildfile are pretty straightforward: we exclude the docs/

subdirectory (since it has no buildfile) and list the *.md files as prerequisites using the

doc{} target type (which, in particular, makes sure they are installed into the appropriate

location):

Revision 0.18, February 202556 The build2 Packaging Guide

2.8.2 Adjust root buildfile: other subdirectories

https://build2.org/article/symlinks.xhtml#windows

./: {*/ -build/ -docs/} \
 doc{README.md PACKAGE-README.md NEWS} \
 docs/doc{*.md} \
 legal{LICENSE} manifest

The alternative approach (create a separate buildfile) is a good choice if things are more

complicated than that. Let’s say we need to adjust the installation location of the files in

docs/ because there is another README.md inside and that would conflict with the root one

when installed into the same location. This time we cannot symlink the top-level docs/

subdirectory (because we need to place a buildfile there). The two options here are to

either symlink the individual files or introduce another subdirectory level inside docs/
(which is the same approach as discussed in Don’t build your main targets in the root

buildfile). Let’s illustrate both sub-cases.

Symlinking individual files works best when you don’t expect the set of files to change often.

For example, if docs/ contains a man page and its HTML rendering, then it’s unlikely this

set will change. On the other hand, if docs/ contains a manual split into an .md file per

chapter, then there is a good chance this set of files will fluctuate between releases.

Continuing with our libfoo example, this is how we symlink the individual *.md files in

docs/:

$ cd libfoo/ # Change to the package root.
$ mkdir docs
$ cd docs/
$ ln -s ../../upstream/docs/*.md ./

Then write a new buildfile in docs/:

./: doc{*.md}

Install the documentation in docs/ into the manual/ subdirectory of,
say, /usr/share/doc/libfoo/ since we cannot install both its and root
README.md into the same location.
#
doc{*.md}: install = doc/manual/

Note that we don’t need to make any changes to the root buildfile since this subdirectory

will automatically get picked up by the {*/ -build/} name pattern that we have there.

Let’s now look at the alternative arrangement with another subdirectory level inside docs/.

Here we achieve the same result but in a slightly different way. Specifically, we call the

subdirectory manual/ and install recreating subdirectories (see Installing for background):

$ cd libfoo/ # Change to the package root.
$ mkdir -p docs/manual
$ cd docs/manual/
$ ln -s ../../../upstream/docs/*.md ./

And the corresponding buildfile in docs/:

57Revision 0.18, February 2025 The build2 Packaging Guide

2.8.2 Adjust root buildfile: other subdirectories

./: doc{**.md}

Install the documentation in docs/ into, say, /usr/share/doc/libfoo/
recreating subdirectories.
#
doc{*}:
{
 install = doc/
 install.subdirs = true
}

Yet another option would be to open a scope for the docs/ subdirectory directly in the root

buildfile (see Output Directories and Scopes for background). For example:

$ cd libfoo/ # Change to the package root.
$ ln -s ../upstream/docs ./

And then add the following to the root buildfile:

docs/
{
 ./: doc{*.md}

 # Install the documentation in docs/ into the manual/ subdirectory
 # of, say, /usr/share/doc/libfoo/ since we cannot install both its
 # and root README.md into the same location.
 #
 doc{*.md}: install = doc/manual/
}

However, this approach should be used sparingly since it can quickly make the root build
file hard to comprehend. Note also that it cannot be used for main targets since an export

stub requires a buildfile to load (see Don’t build your main targets in the root build
file for details).

2.8.3 Adjust root buildfile: commit and test

Once all the adjustments to the root buildfile are made, it makes sense to test it locally

(this time from the root of the package), commit our changes, and test with CI:

$ cd libfoo/ # Change to the package root.
$ b test
$ bdep test -a

If you had to add any extra files to the root buildfile (or add buildfiles in extra

subdirectories), then it also makes sense to test the installation (Test locally: installation) and

the preparation of the source distribution (Test locally: distribution) to make sure the extra

files end up in the right places.

Then commit our changes and CI:

Revision 0.18, February 202558 The build2 Packaging Guide

2.8.3 Adjust root buildfile: commit and test

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Adjust root buildfile"
$ git push

$ bdep ci

2.8.4 Adjust manifest

The next file we need to look over is the package’s manifest. Here is what it will look like,

using our libfoo as an example:

: 1
name: libfoo
version: 2.1.0-a.0.z
language: c++
project: foo
summary: C++ library implementing secure Foo protocol
license: MIT ; MIT License.
description-file: README.md
package-description-file: PACKAGE-README.md
changes-file: NEWS
url: https://example.org/upstream
email: upstream@example.org
package-url: https://github.com/build2-packaging/foo
package-email: packaging@build2.org ; Mailing list.
depends: * build2 >= 0.16.0
depends: * bpkg >= 0.16.0

You can find the description of these and other package manifest values in Package Mani

fest (the manifest format is described in Manifest Format).

In the above listing the values that we likely need to adjust are summary and license,

unless correctly auto-detected by bdep-new in the Create final package step. See Adjust

manifest: summary and Adjust manifest: license below for guidelines on changing

these values.

It is not uncommon for projects to be licensed under multiple licenses. Note, however, that

bdep-new will only detect one license and you will need to specify any additional licenses

manually.

We will also need to change url and email with the upstream project’s homepage URL and

e-mail, respectively. If upstream doesn’t have a dedicated website for the project, then use its

repository URL on GitHub or equivalent. For e-mail you would normally use a mailing list

address. If upstream doesn’t have any e-mail contacts, then you can drop this value from the

manifest. The package-url and package-email values normally do not need to be

changed.

packaging@build2.org is a mailing list for discussions related to the packaging efforts of

third-party projects.

59Revision 0.18, February 2025 The build2 Packaging Guide

2.8.4 Adjust manifest

https://lists.build2.org/

Note also that while you may be tempted to adjust the version value, resist this temptation

since this will be done automatically by bdep-release(1) later.

You may also want to add the following values in certain cases:

changes-file

If you have added any extra news of changelog files to the root buildfile (see Adjust

root buildfile), then it may also make sense to list them in the manifest. For example:

changes-file: ChangeLog.txt

topics

Package topics. For example:

topics: network protocol, network security

If the upstream project is hosted on GitHub or similar, then you can usually copy the

topics from the upstream repository description.

doc-url

src-url

Documentation and source code URLs. For example:

doc-url: https://example.org/foo/doc/
src-url: https://github.com/.../foo

2.8.5 Adjust manifest: summary

For summary use a brief description of the functionality provided by the library or

executable. Less than 70 characters is a good target to aim for. Don’t capitalize subsequent

words unless proper nouns and omit the trailing dot. For example:

summary: Vim xxd hexdump utility

Omit weasel words such as "modern", "simple", "fast", "small", etc., since they don’t convey

anything specific. Omit "header-only" or "single-header" for C/C++ libraries since, at least in

the context of build2, it does not imply any benefit.

If upstream does not offer a sensible summary, the following template is recommended for

libraries:

summary: <functionality> C library
summary: <functionality> C++ library

For example:

summary: Event notification C library
summary: Validating XML parsing and serialization C++ library

Revision 0.18, February 202560 The build2 Packaging Guide

2.8.5 Adjust manifest: summary

If the project consists of multiple packages, it may be tempting to name each package in terms

of the overall project name, for example:

name: libigl-core
summary: libigl core module

This doesn’t give the user any clue about what functionality is provided unless they find out

what libigl is about. Better:

summary: Geometry processing C++ library, core module

If you follow the above pattern, then to produce a summary for external tests or examples

packages simply add "tests" or "examples" at the end, for example:

summary: Event notification C library tests
summary: Geometry processing C++ library, core module examples

2.8.6 Adjust manifest: license

For license, use the SPDX license ID if at all possible. If multiple licenses are involved,

use the SPDX License expression. See the license manifest value documentation for

details, including the list of the SPDX IDs for the commonly used licenses.

2.8.7 Adjust manifest: commit and test

Once all the adjustments to the manifest are made, it makes sense to test it locally, commit

our changes, and test with CI:

$ cd libfoo/ # Change to the package root.
$ b test
$ bdep test -a

Then commit our changes and CI:

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Adjust manifest"
$ git push

$ bdep ci

2.8.8 Adjust PACKAGE-README.md

The last package file we need to adjust is PACKAGE-README.md which describes how to

use the package from a build2-based project. The template generated by bdep-new estab

lishes the recommended structure and includes a number of placeholders enclosed in < >,

such as <UPSTREAM-NAME> and <SUMMARY-OF-FUNCTIONALITY>, that need to be

replaced with the package-specific content. While all the placeholders should be self-explana

tory, below are a couple of guidelines.

61Revision 0.18, February 2025 The build2 Packaging Guide

2.8.6 Adjust manifest: license

https://spdx.org/licenses/
https://build2.org/bpkg/doc/build2-package-manager-manual.xhtml#manifest-package-license

For <SUMMARY-OF-FUNCTIONALITY> it’s best to copy a paragraph or two from the

upstream documentation, usually from README.md or the project’s web page.

If the bdep new command was able to extract the summary from upstream README, then

the summary in the heading (first line) will contain that information. Otherwise, you would

need to adjust it manually, similar to manifest above. In this case use the summary value

form the manifest, perhaps slightly shortened.

If the package contains a single importable target, as is typical with libraries, then it makes

sense to drop the "Importable targets" section since it won’t add anything that hasn’t already

been said in the "Usage" section.

Similarly, if the package has no configuration variables, then it makes sense to drop the

"Configuration variables" section.

For inspiration, see

PACKAGE-README.md in zstd and PACKAGE-README.md in libevent (libraries) as

well as PACKAGE-README.md in zstd and README.md in xxd (executables).

If upstream does not provide a README file, then it makes sense to rename

PACKAGE-README.md to just README.md in the build2 package, as was done in the

xxd package mentioned above.

Once PACKAGE-README.md is ready, commit and push the changes. You may also want to

view the result on GitHub to make sure everything is rendered correctly.

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Adjust PACKAGE-README.md"
$ git push

2.9 Adjust package repository README.md

With all the package files taken care of, the last file we need to adjust is README.md in the

root of our package repository (it was created in the Initialize package repository with bdep
new step).

If you need to add additional packages and are doing this one package at a time (for example,

first library then executable in the "library and executable" project), then this is the point

where you would want to restart from Create package and generate buildfile templates

for another iteration. Only once all the packages are added does it make sense to continue

with updating this README.md.

The primary purpose of the package repository README.md is to provide setup instructions

as well as any other relevant information for the development of the packages as opposed to

their consumption. However, it’s also a good idea to give a brief summary of what this reposi

tory is about and to point users interested in consumption to the PACKAGE-README.md

Revision 0.18, February 202562 The build2 Packaging Guide

2.9 Adjust package repository README.md

https://github.com/build2-packaging/zstd/blob/master/libzstd/PACKAGE-README.md
https://github.com/build2-packaging/zstd
https://github.com/build2-packaging/libevent/blob/main/PACKAGE-README.md
https://github.com/build2-packaging/libevent
https://github.com/build2-packaging/zstd/blob/master/zstd/PACKAGE-README.md
https://github.com/build2-packaging/zstd
https://github.com/build2-packaging/xxd/blob/master/xxd/README.md
https://github.com/build2-packaging/xxd

files.

The template generated by bdep new establishes the recommended structure to achieve

these objectives. It includes a number of placeholders enclosed in < >, such as

<UPSTREAM-URL> and <SUMMARY-OF-FUNCTIONALITY>, that need to be replaced

with the repository-specific content. While all the placeholders should be self-explanatory,

below are a couple of guidelines.

If there is a single package, then <SUMMARY> in the heading can be the same as in

PACKAGE-README.md. If there are multiple packages, then use an overall summary of the

upstream project.

For <SUMMARY-OF-FUNCTIONALITY> it’s best to copy a paragraph or two from the

upstream documentation, usually from README.md or the project’s web page. Again, for a

single package, this can be copied directly from PACKAGE-README.md.

If there are multiple packages in the repository, then it’s recommended to replace a single link

to PACKAGE-README.md with a list of links (this also shows the available packages). For

example:

... If you want to use ‘foo‘ in your ‘build2‘-based project, then
instead see the accompanying ‘PACKAGE-README.md‘ files:

* [‘libfoo/PACKAGE-README.md‘](libfoo/PACKAGE-README.md)
* [‘foo/PACKAGE-README.md‘](foo/PACKAGE-README.md)

The remainder of the generated README.md file are the standard bdep initialization instruc

tions. Adjust them if your package repository requires anything special (for example, a host

configuration). This is also the place to mention anything unusual, such as that upstream does

not use semver (and thus only a subset of bdep functionality is usable).

For inspiration, see README.md in the zstd package repository.

Once the repository README.md is ready, commit and push the changes. You may also want

to view the result on GitHub to make sure everything is rendered correctly.

$ cd foo/ # Change to the package repository root.
$ git add .
$ git status
$ git commit -m "Adjust package repository README.md"
$ git push

2.10 Release and publish

Once all the adjustments are in and everything is tested, we can release the final version of the

package and then publish it to cppget.org. Both of these steps are automated with the corre

sponding bdep commands. But before performing these steps we need to transfer the

package repository to github.com/build2-packaging.

63Revision 0.18, February 2025 The build2 Packaging Guide

2.10 Release and publish

https://github.com/build2-packaging/zstd/blob/master/README.md
https://github.com/build2-packaging/zstd
https://cppget.org/
https://github.com/build2-packaging

2.10.1 Transfer package repository

If you have been doing your work in a repository in your personal workspace, then now is the

time to transfer it to the github.com/build2-packaging organization.

It is important to transfer the repository before publishing the first version of the package

since the repository is used as a proxy for package name ownership (see

bdep-publish(1) for details). If you publish the package from your personal workspace

and then transfer the repository, the ownership information will have to be adjusted manually,

which we would prefer to avoid.

The first step is to become a member of this organization (unless you already are). This will

give you permissions to create new repositories, which is required to perform a transfer (you

will also have full read/write access to the repository once transferred). To get an invite, get in

touch not forgetting to mention your GitHub user name.

If your repository has any prefixes, such as build2-, or suffixes such as -package, then

the next step is to rename it to follow the Use upstream repository name as package repository

name guideline. Go to the repository’s Settings on GitHub where you should see the Rename

button.

Finally, to perform the transfer, go to the repository’s Settings, Danger Zone section, where

you should see the Transfer button. Select build2-packaging as the organization to

transfer to, and complete the transfer.

Once transferred, you will be considered the maintainer of this package going forward. If

other members of the build2-packaging organization wish to participate in the package

maintenance, the correct etiquette is to do this via pull requests. However, if you lose interest

in maintaining a package or otherwise become unresponsive, we may allow a new maintainer

to take over this role.

In extraordinary circumstances the build2-packaging administrators may make direct

changes to the package, for example, to release a new revision in order to address a critical

issue. They will still try to coordinate the changes with the maintainer but may not always be

able to wait for a response in time-sensitive cases.

2.10.2 Release final version

As you may recall, our package currently has a pre-release snapshot version of the upstream

version (see Adjust package version). Once all the changes are in, we can change to the final

upstream version, in a sense signaling that this package version is ready.

If you are working in a branch, then now is also the time to merge it into master (or equiva

lent).

Revision 0.18, February 202564 The build2 Packaging Guide

2.10.1 Transfer package repository

https://github.com/build2-packaging
https://build2.org/community.xhtml#help
https://build2.org/community.xhtml#help

The recommended way to do this is with the bdep-release(1) command (see Versioning

and Release Management for background). Besides replacing the version value in the

package manifest file, it also commits this change, tags it with the vX.Y.Z tag, and can be

instructed to push the changes (or show the git command to do so). This command also by

default "opens" the next development version, which is something that we normally want for

our own projects but not when we package a third-party one (since we cannot predict which

version upstream will release next). So we disable this functionality. For example:

$ cd foo/ # Change to the package repository root.
$ bdep release --no-open --show-push

Then review the commit made by bdep-release and, if everything looks good, push the

changes by copying the command that it printed:

$ git diff HEAD~1
$ git push ...

If something is wrong and you need to undo this commit, don’t forget to also remove the tag.

Note also that once you have pushed your changes, you cannot undo the commit. Instead, you

will need to make a revision. See Version management for background and details.

2.10.3 Publish released version

Once the version is released we can publish the package to cppget.org with the

bdep-publish(1) command (see Versioning and Release Management for background):

$ cd foo/ # Change to the package repository root.
$ bdep publish

The bdep-publish command prepares the source distribution of your package, uploads the

resulting archive to the package repository, and prints a link to the package submission in the

queue. Open this link in the browser and check that there are no surprises in the build results

(they should match the earlier CI results) or in the displayed package information

(PACKAGE-README.md, etc).

While there should normally be no discrepancies in the build results compared to our earlier

CI submissions, the way the packages are built on CI and in the package repository are not

exactly the same. Specifically, CI builds them from git while the package repository – from

the submitted package archives. If there are differences, it’s almost always due to issues in the

source distribution preparation (see Test locally: distribution).

If everything looks good, then you are done: the package submission will be moved to

cppget.org for further testing and review. If this further testing or review identifies any prob

lems with the package, then an issue will be created in the package repository with the feed

back (see Package Review for details). In this case you may need to release and publish a

version revision to address any serious problems. But before doing that (or releasing a new

version), you should first read through the following Package version management section to

understand the recommended "version lifecycle" of a third-party package.

65Revision 0.18, February 2025 The build2 Packaging Guide

2.10.3 Publish released version

https://cppget.org/
https://cppget.org/

Also, if there is an issue for this package in github.com/build2-packaging/WISHLIST, then

you would want to add a comment and close it once the package has been moved to

cppget.org.

2.11 Package version management

Once we have pushed the release commit, in order to preserve continuous versioning (see

Adjust package version for background), no further changes should be made to the package

without also changing its version.

More precisely, you can make and commit changes without changing the version provided

they don’t affect the package. For example, you may keep a TODO file in the root of your

repository which is not part of any package. Updating such a file without changing the version

is ok since the package remains unchanged.

While in our own projects we can change the versions as we see fit, with third-party projects

the versions are dictated by upstream and as a result we are limited to what we can use to fix

issues in our packaging work itself. It may be tempting (and perhaps even conceptually

correct) to release a patch version for our own fixes, however, we will be in trouble if later

upstream releases the same patch version but with a different set of changes (plus the users of

our package may wonder where did this version come from). As a result, we should only

change the major, minor, or patch components of the package version in response to the corre

sponding upstream releases. For fixes to the packaging work itself we should instead use

version revisions.

Because a revision replaces the existing version, we should try to limit revision changes to

bug fixes and preferably only in the package "infrastructure" (buildfiles, manifest,

etc). Fixes to upstream source code should be limited to critical bugs and be preferably back

ported from upstream. To put it another way, changes in a revision should have an even more

limited scope than a patch release.

Based on this, the recommended "version lifecycle" for a third-party package is as follows:

1. After a release (the Release final version step above), for example, version 2.1.0, the

package enters a "revision phase" where we can release revisions (2.1.0+1, 2.1.0+2,

etc) to address any issues in the packaging work. See New revision for the detailed

procedure.

2. When a new upstream version is released, for example version 2.2.0, and we wish to

upgrade our package to this version, we switch to its pre-release snapshot version

(2.2.0-a.0.z) the same way as we did in the Adjust package version step initially.

See New version for the detailed procedure.

3. Once we are done upgrading to the new upstream version, we release the final version

just like in the Release final version step initially. At this point the package enters

another revision phase.

Revision 0.18, February 202566 The build2 Packaging Guide

2.11 Package version management

https://github.com/build2-packaging/WISHLIST
https://cppget.org/

Note also that in the above example, once we have switched to 2.2.0-a.0.z, we cannot go

back and release another revision or patch version for 2.1.0 on the current branch. Instead,

we will need to create a separate branch for the 2.1.Z release series and make a revision or

patch version there. See New version/revision in old release series for the detailed procedure.

2.11.1 New revision

As discussed in Package version management, we release revisions to fix issues in the

package "infrastructure" (buildfiles, manifest, etc) as well as critical bugs in

upstream source code.

Releasing a new revision is also a good opportunity to review and fix any accumulated issues

that didn’t warrant a revision on their own. See New version: review/fix accumulated issues

for background.

In the revision phase of the package version lifecycle (i.e., when the version does not end with

-a.0.z), every commit must be accompanied by the revision increment to maintain continu

ous versioning. As a result, each revision release commit necessarily also contains the

changes in this revision. Below is a typical workflow for releasing and publishing the revi

sion:

$ # make changes
$ # test locally
$ git add .
$ bdep release --revision --show-push
$ # review commit
$ git push ...
$ # test with CI
$ bdep publish

Customarily, the revision commit message has the "Release version X.Y.Z+R"
summary as generated by bdep-release followed by the description of changes, orga

nized in a list if there are several. For example:

Release version 2.1.0+1

- Don’t compile port/strlcpy.c on Linux if GNU libc is 2.38 or newer
 since it now provides the strl*() functions.

- Switch to using -pthread instead of -D_REENTRANT/-lpthread.

The fact that all the changes must be in a single commit is another reason to avoid substantial

changes in revisions.

Note also that you can make multiple commits while developing and testing the changes for a

revision in a separate branch. However, once they are ready for a release, they need to be

squashed into a single commit. The bdep-release(1) command provides the --amend
and --squash options to automate this. For example, here is what a workflow with a sepa

rate branch might look like:

67Revision 0.18, February 2025 The build2 Packaging Guide

2.11.1 New revision

$ git checkout -b wip-2.1.0+1

$ # make strl*() changes
$ # test locally
$ git commit -a -m "Omit port/strlcpy.c if glibc 2.38 or newer"
$ git push -u
$ # test with CI

$ # make pthread changes
$ # test locally
$ git commit -a -m "Switch to using -pthread"
$ git push
$ # test with CI

$ git checkout master
$ git merge --ff-only wip-2.1.0+1
$ bdep release --revision --show-push --amend --squash 2
$ # review commit
$ # test locally
$ git push ...
$ # test with CI
$ bdep publish

2.11.2 New version

As discussed in Package version management, we release new versions strictly in response to

the corresponding upstream releases.

The amount or work required to upgrade a package to a new upstream version depends on the

extend of changes in the new version.

On one extreme you may have a patch release which fixes a couple of bugs in the upstream

source code without any changes to the set of source files, upstream build system, etc. In such

cases, upgrading a package is a simple matter of creating a new work branch, pointing the

upstream git submodule to the new release, running tests, and then merging, releasing,

and publishing a new package version.

On the other extreme you may have a new major upstream release which is essentially a

from-scratch rewrite with new source code layout, different upstream build system, etc. In

such cases it may be easier to likewise start from scratch. Specifically, create a new work

branch, point the upstream git submodule to the new release, delete the existing package,

and continue from Create package and generate buildfile templates.

Most of the time, however, it will be something in between where you may need to tweak a

few things here and there, such as adding symlinks to new source files (or removing old ones),

tweaking the buildfiles to reflect changes in the upstream build system, etc.

The following sections provide a checklist-like sequence of steps that can be used to review

upstream changes with links to the relevant earlier sections in case adjustments are required.

Revision 0.18, February 202568 The build2 Packaging Guide

2.11.2 New version

2.11.3 New version: create new work branch

When upgrading a package to a new upstream version it’s recommended to do this in a new

work branch which, upon completion, is merged into master (or equivalent). For example,

if the new upstream version is 2.2.0:

$ git checkout -b wip-2.2.0

If you are not the maintainer of the package and would like to help with preparing the new

version, then, when everything is ready, use this branch to create a pull request instead of

merging it directly.

2.11.4 New version: open new version

This step corresponds to Adjust package version during the initial packaging. Here we can

make use of the bdep-release command to automatically open the new version and make

the corresponding commit. For example, if the new upstream version is 2.2.0:

$ bdep release --open --no-push --open-base 2.2.0

2.11.5 New version: update upstream submodule

This step corresponds to Add upstream repository as git submodule during the initial pack

aging. Here we need to update the submodule to point to the upstream commit that corre

sponds to the new version.

For example, if the upstream release tag we are interested in is called v2.2.0, to update the

upstream submodule to point to this release commit, run the following commands:

$ cd upstream/
$ git fetch
$ git checkout v2.2.0
$ cd ../

$ git add .
$ git status
$ git commit -m "Update upstream submodule to 2.2.0"

2.11.6 New version: review upstream changes

At this point it’s a good idea to get an overview of the upstream changes between the two

releases in order to determine which adjustments are likely to be required in the build2
package. We can use the upstream submodule for that, which contains the change history

we need.

One way to get an overview of changes between the releases is to use a graphical repository

browser such as gitk and view a cumulative diff of changes between the two versions. For

example, assuming the latest packaged version is tagged v2.1.0 and the new version is

tagged v2.2.0:

69Revision 0.18, February 2025 The build2 Packaging Guide

2.11.3 New version: create new work branch

$ cd upstream/
$ gitk v2.1.0..v2.2.0 &

Then click on the commit tagged v2.2.0, scroll down and right-click on the commit tagged

v2.1.0, and select the "Diff this -> selected" menu item. This will display the cumulative

set of changes between these two upstream versions. Review them looking for the following

types of changes in particular (discussed in the following sections):

Changes to the source code layout.

New dependencies being added or old removed.

New source files being added or old removed (including in tests, etc).

Changes to the upstream build system.

Other new files/subdirectories being added or old removed.

2.11.7 New version: layout changes

As mentioned earlier, for drastic layout changes it may make sense to start from scratch and

re-generate the package with the bdep-new command (use Decide on the package source

code layout as a starting point). On the other hand, if the changes are minor, then you can try

to adjust things manually. An in-between strategy is to generate the new layout using

bdep-new on the side and then retrofit the relevant changes in buildfiles to the existing

package. In a sense, this approach uses bdep-new as a guide to figure out how to implement

the new layout.

2.11.8 New version: new/old dependencies

If upstream added new or removed old dependencies, then you will need to replicate these

changes in your package as in the Add dependencies and Adjust source buildfile: depen

dencies initial packaging steps.

2.11.9 New version: new/old source files

If upstream added new or removed old source files, then you will need to replicate these

changes in your package as in the Fill with upstream source code and possibly Adjust header

buildfile and Adjust source buildfile: sources, private headers initial packaging

steps.

Also don’t forget about tests, examples, etc., which may also add new or remove old source

files (typically new tests). See Convert smoke test to upstream tests.

If there are any manual modifications to the upstream source code, then you will also need to

re-apply them to the new version as discussed in Modifying upstream source code manually.

Revision 0.18, February 202570 The build2 Packaging Guide

2.11.7 New version: layout changes

2.11.10 New version: changes to build system

If upstream changed anything in the build system, then you may need to replicate these

changes in your package’s buildfiles. The relevant initial packaging steps are: Adjust

project-wide build system files in build/ and Adjust source buildfile: build and export

options.

The corresponding steps for tests are: Adjust project-wide build system files in

tests/build/ and Convert smoke test to upstream tests.

2.11.11 New version: other new/old files/subdirectories

If upstream added or removed any other files or subdirectories that are relevant to our package

(such as documentation), then adjust the package similar to the Adjust root buildfile and

Adjust root buildfile: other subdirectories initial packaging steps.

2.11.12 New version: review manifest and PACKAGE-README.md

It makes sense to review the package manifest (Adjust manifest) and

PACKAGE-README.md (Adjust PACKAGE-README.md) for any updates.

2.11.13 New version: review repository README.md

If any new packages were added in this version or if there are any changes to the development

workflow, then it makes sense to review and if necessary update package repository

README.md (Adjust package repository README.md).

2.11.14 New version: review/fix accumulated issues

When a bug is identified in an already released package version, we may not always be able to

fix it immediately (for example, by releasing a revision). This could be because the change is

too extensive/risky for a revision or simply not critical enough to warrant a release. In such

cases it’s recommended to file an issue in the package repository with the view to fix it when

the next opportunity arises. Releasing a new upstream version is one such opportunity and it

makes sense to review any accumulated package issues and see if any of them could be

addressed.

2.11.15 New version: test locally and with CI

Once all the adjustments are in, test the package both locally and with CI similar to how we

did it during the initial packaging after completing the smoke test:

Test locally

Test locally: installation

Test locally: distribution

Commit and test with CI

71Revision 0.18, February 2025 The build2 Packaging Guide

2.11.10 New version: changes to build system

2.11.16 New version: merge, release, and publish

When the new version of the package is ready to be released, merge the work branch to

master (or equivalent):

$ git checkout master
$ git merge --ff-only wip-2.2.0

Then release and publish using the same steps as after the initial packaging: Release and

publish.

2.11.17 New version/revision in old release series

As discussed in Package version management, if we have already switched to the next

upstream version in the master (or equivalent) branch, we cannot go back and release a new

version or revision for an older release series on the same branch. Instead, we need to create a

separate, long-lived branch for this work.

As an example, let’s say we need to release another revision or a patch version for an already

released 2.1.0 while our master branch has already moved on to 2.2.0. In this case we

create a new branch, called 2.1, to continue with the 2.1.Z release series. The starting point

of this branch should be the latest released version/revision in the 2.1 series. Let’s say in our

case it is 2.1.0+2, meaning we have released two revisions for 2.1.0 on the master
branch before upgrading to 2.2.0. Therefore we use the v2.1.0+2 release tag to start the

2.1 branch:

$ git checkout -b 2.1 v2.1.0+2

Once this is done, we continue with the same steps as in New revision or New version except

that we never merge this branch to master. If we ever need to release another revision or

version in this release series, then we continue using this branch. In a sense, this branch

becomes the equivalent of the master branch for this release series and you should treat it as

such (once published, never delete, rewrite its history, etc).

It is less likely but possible that you may need to release a new minor version in an old release

series. For example, the master branch may have moved on to 3.0.0 and you want to release

2.2.0 after the already released 2.1.0. In this case it makes sense to call the branch 2
since it corresponds to the 2.Y.Z release series. If you already have the 2.1 branch, then it

makes sense to rename it to 2.

3 What Not to Do

This chapter describes the common anti-patterns along with the recommended alternative

approaches.

Revision 0.18, February 202572 The build2 Packaging Guide

3 What Not to Do

3.1 Don’t write buildfiles from scratch, use bdep-new

Unless you have good reasons not to, create the initial project layout automatically using

bdep-new(1), then tweak it if necessary and fill with upstream source code.

The main rationale here is that there are many nuances in getting the build right and

auto-generated buildfiles had years of refinement and fine-tuning. The familiar structure

also makes it easier for others to understand your build, for example while reviewing your

package submission or helping out with the package maintenance.

The bdep-new(1) command supports a wide variety of source layouts. While it may take a

bit of time to understand the customization points necessary to achieve the desired layout for

your first package, this will pay off in spades when you work on converting subsequent pack

ages.

See Craft bdep new command line to create package for details.

3.2 Avoid fixing upstream issues in the build2 package

Any deviations from upstream makes the build2 package more difficult to maintain. In

particular, if you make a large number of changes to the upstream source code, releasing a

new version will require a lot of work. As a result, it is recommended to avoid fixing

upstream issues in the build2 package. Instead, try to have the issues fixed upstream and

wait for them to be released as a new version.

Sometimes, however, you may have no choice. For example, upstream is inactive or has no

plans to release a new version with your fixes any time soon. Or you may want to add support

for a platform/compiler that upstream is not willing or capable of supporting.

Note that even if you do fix some issues in the build2 package directly, try hard to also

incorporate them upstream so that you don’t need to maintain the patches forever.

See also Avoid changing upstream source code layout and How do I patch upstream source

code?

3.3 Avoid changing upstream source code layout

It’s a good idea to stay as close to the upstream’s source code layout as possible. For back

ground and rationale, see Decide on the package source code layout.

3.4 Don’t make library header-only if it can be compiled

Some libraries offer two alternative modes: header-only and compiled. Unless there are good

reasons not to, a build2 build of such a library should use the compiled mode.

73Revision 0.18, February 2025 The build2 Packaging Guide

3.1 Don’t write buildfiles from scratch, use bdep-new

Some libraries use the precompiled term to describe the non-header-only mode. We don’t

recommend using this term in the build2 package since it has a strong association with

precompiled headers and can therefore be confusing. Instead, use the compiled term.

The main rationale here is that a library would not be offering a compiled mode if there were

no benefits (usually faster compile times of library consumers) and there is no reason not to

take advantage of it in the build2 package.

There are, however, valid reasons why a compiled mode cannot be used, the most common of

which are:

The compiled mode is not well maintained/tested by upstream and therefore offers infe

rior user experience.

The compiled mode does not work on some platforms, usually Windows due to the lack

of symbol export support (but see Automatic DLL Symbol Exporting).

Uses of the compiled version of the library requires changes to the library consumers, for

example, inclusion of different headers.

If a compiled mode cannot always be used, then it may be tempting to support both modes by

making the mode user-configurable. Unless there are strong reasons to, you should resist this

temptation and, if the compiled mode is not universally usable, then use the header-only mode

everywhere.

The main rationale here is that variability adds complexity which makes the result more prone

to bugs, more difficult to use, and harder to review and maintain. If you really want to have

the compiled mode, then the right way to achieve it is to work with upstream to fix any issues

that prevent its use in build2.

There are, however, valid reasons why supporting both modes may be needed, the most

common of which are:

The library is widely used in both modes but switching from one mode to the other

requires changes to the library consumers (for example, inclusion of different headers).

In this case only supporting one mode would mean not supporting a large number of

library consumers.

The library consists of a large number of independent components while its common for

applications to only use a small subset of them. And compiling all of them in the

compiled mode takes a substantial amount of time. Note that this can alternatively be

addressed by making the presence of optional components user-configurable.

3.5 Don’t bundle dependencies

Sometimes third-party projects bundle their dependencies with their source code (also called

vendoring). For example, a C++ library may bundle a testing framework. This is especially

common with catch2 where one often encounters a comical situation with only a few kilo

bytes of library source code and over 600KB of catch2.hpp.

Revision 0.18, February 202574 The build2 Packaging Guide

3.5 Don’t bundle dependencies

https://cppget.org/catch2

The extra size, while wasteful, is not the main issue, however. The bigger problem is that if a

bug is fixed in the bundled dependency, then to propagate the fix we will need to release a

new version (or revision) of each package that bundles it. Needless to say this is not scalable.

While this doesn’t apply to testing frameworks, an even bigger issue with bundling of depen

dencies in general is that two libraries that bundle the same dependency (potentially of differ

ent versions) may not be able to coexist in the same build with the symptoms ranging from

compile errors to subtle runtime issues that are hard to diagnose.

As a result, it is strongly recommended that you unbundle any dependencies that upstream

may have bundled. In case of testing frameworks, see How do I handle tests that have extra

dependencies? for the recommended way to deal with such cases.

One special case where a bundled dependency may be warranted is a small utility that is

completely inline/private to the implementation and where making it an external dependency

may lead to a less performant result (due to the inability to inline without resorting to LTO).

The xxhash implementation in libzstd is a representative example of this situation.

3.6 Don’t build your main targets in the root buildfile

It may be tempting to have your main targets (libraries, executables) in the root buildfile,

especially if it allows you to symlink entire directories from upstream/ (which is not possi

ble if you have to have a buildfile inside). However, this is not recommended except for

the simplest of projects.

Firstly, this quickly gets messy since you have to combine managing README, LICENSE,

etc., and subdirectories with your main target builds. More importantly, this also means that

when your main target is imported (and thus the buildfile that defines this target must be

loaded), your entire project will be loaded, including any tests/ and examples/ subpro

jects, and that is wasteful.

If you want to continue symlinking entire directories from upstream/ but without moving

everything to the root buildfile, the recommended approach is to simply add another

subdirectory level. Let’s look at a few concrete example to illustrate the technique (see Decide

on the package source code layout for background on the terminology used).

Here is the directory structure of a package which uses a combined layout (no header/source

split) and where the library target is in the root buildfile:

libigl-core/
|-- igl/ -> ../upstream/igl/
|-- tests/
·-- buildfile # Defines lib{igl-core}.

And here is the alternative structure where we have added the extra libigl-core subdirec

tory with its own buildfile:

75Revision 0.18, February 2025 The build2 Packaging Guide

3.6 Don’t build your main targets in the root buildfile

https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md
https://github.com/build2/HOWTO/blob/master/entries/handle-tests-with-extra-dependencies.md

libigl-core/
|-- libigl-core/
|Â Â |-- igl/ -> ../../upstream/igl/
|Â Â ·-- buildfile # Defines lib{igl-core}.
|-- tests/
·-- buildfile

Below is the bdep-new invocation that can be used to automatically create this alternative

structure (see Craft bdep new command line to create package for background and

bdep-new(1) for details):

$ bdep new \
 --type lib,prefix=libigl-core,subdir=igl,buildfile-in-prefix \
 libigl-core

Let’s also look at an example of the split layout, which may require a slightly different

bdep-new sub-options to achieve the same result. Here is the layout which matched

upstream exactly:

$ bdep new --type lib,split,subdir=foo,no-subdir-source libfoo
$ tree libfoo
libfoo/
|-- include/
|Â Â ·-- foo/
|Â Â |-- buildfile
|Â Â ·-- ...
·-- src/
 |-- buildfile
 ·-- ...

However, with this layout we will not be able to symlink the entire include/foo/ and

src/ subdirectories because there are buildfiles inside (and which may tempt you to

just move everything to the root buildfile). To fix this we can move the buildfiles
out of source subdirectory foo/ and into prefixes (include/ and src/) using the

buildfile-in-prefix sub-option. And since src/ doesn’t have a source subdirectory,

we have to invent one:

$ bdep new --type lib,split,subdir=foo,buildfile-in-prefix libfoo
$ tree libfoo
libfoo/
|-- include/
|Â Â |-- foo/ -> ../../upstream/include/foo/
|Â Â ·-- buildfile
·-- src/
 |-- foo/ -> ../../upstream/src/
 ·-- buildfile

3.7 Don’t make extensive changes in a revision

Unlike a new version, a revision replaces the previous revision of the same version and as a

result must be strictly backwards-compatible in all aspects with what it replaces. If you make

extensive changes in a revision, it becomes difficult to guarantee that this requirement is satis

fied. As a result, you should refrain from making major changes, like substantially altering the

build, in a revision, instead delaying such changes until the next version.

Revision 0.18, February 202576 The build2 Packaging Guide

3.7 Don’t make extensive changes in a revision

The recommendation is to limit revision changes to bug fixes and preferably only in the

package "infrastructure" (buildfiles, manifest, etc). Fixes to upstream source code

should be limited to critical bugs and be preferably backported from upstream. To put it

another way, changes in a revision should have an even more limited scope than a patch

release.

4 Packaging HOWTO

This chapter provides advice on how to handle less common packaging tasks and require

ments.

4.1 How do I patch upstream source code?

If you need to change something in the upstream source code, there are several options: You

can make a copy of the upstream source file and make the modifications there. While straight

forward, this approach has one major drawback: you will have to keep re-applying the

changes for every subsequent version unless and until upstream incorporates your changes.

The other two options try to work around this drawback.

The first alternative option is to modify the upstream source code automatically during the

build, typically using an ad hoc recipe. This approach works best when the changes are

regular and can be applied mechanically with something like the sed builtin.

The second alternative option is to use the C/C++ preprocessor to make the necessary changes

to the upstream source code during compilation. Unlike the first alternative, this approach

doesn’t have a prescribed way to apply it in every situation and often requires some imagina

tion. Note that it also has the tendency to quickly get out of hand, at which point it’s wise to

keep it simple and use the first option (manual modification).

The following sections examine each approach in detail.

4.1.1 Modifying upstream source code manually

As an illustration of this approach, let’s say we need to patch src/foo.cpp in our libfoo
example from the previous sections (see the Fill with upstream source code step for a

refresher). The recommended sequence of steps is as follows:

1. Rename the upstream symlink to .orig:

$ cd libfoo/src/
$ mv foo.cpp foo.cpp.orig

2. Make a deep copy of .orig:

$ cp -H foo.cpp.orig foo.cpp

3. Make any necessary modifications in the deep copy:

77Revision 0.18, February 2025 The build2 Packaging Guide

4 Packaging HOWTO

$ edit foo.cpp

4. Create a patch for the modifications:

$ diff -u foo.cpp.orig foo.cpp >foo.cpp.patch

The presence of the .orig and .patch files makes it clear that the upstream code was

modified. They are also useful when re-applying the changes to the new version of the

upstream source code. The recommended sequence of steps for this task is as follows:

1. After the upstream submodule update (see the New version: update upstream

submodule step), the .orig symlink points to the new version of the upstream source

file.

2. Overwrite old modified version with a deep copy of new .orig:

$ cp -H foo.cpp.orig foo.cpp

3. Apply old modifications to the new deep copy:

$ patch <foo.cpp.patch

If some hunks of the patch could not be applied, manually resolve any conflicts.

4. If in the previous step the patch did not apply cleanly, regenerate it:

$ diff -u foo.cpp.orig foo.cpp >foo.cpp.patch

4.1.2 Modifying upstream source code during build

As an illustration of this approach, let’s say upstream is using the ${VAR} style variable

substitutions in their config.h.cmake instead of the more traditional @VAR@ style:

/* config.h.cmake */

#define FOO_VERSION "${PROJECT_VERSION}"

The ${VAR} style is not supported by the build2 autoconf module which means we

cannot use the upstream config.h.cmake as is. While we could patch this file manually to

use @VAR@ instead, this is a pretty mechanical change that can be easily made with a simple

ad hoc recipe during the build, freeing us from manually applying the same changes in subse

quent versions. For example:

using autoconf

h{config}: in{config.h.in}
{
 autoconf.flavor = cmake
 PROJECT_VERSION = $version
}

in{config.h.in}: file{config.h.cmake}
{{
 sed -e ’s/\$\{(.+)\}/@\1@/g’ $path($<) >$path($>)
}}

Revision 0.18, February 202578 The build2 Packaging Guide

4.1.2 Modifying upstream source code during build

https://github.com/build2/libbuild2-autoconf

4.1.3 Modifying upstream source code with C/C++ preprocessor

A good illustration of this approach is adding the build2 metadata to an executable (see

How do I convey additional information (metadata) with executables and C/C++ libraries? for

background). Let’s say we have a symlink to upstream’s main.c that implements the

executable’s main() function and we need to add a snipped of code at the beginning of this

function that handles the --build2-metadata option. While manually modifying

main.c is not a wrong approach, we can try to be clever and do it automatically with the

preprocessor.

Specifically, we can create another file next to the main.c symlink, calling it, for example,

main-build2.c, with the following contents:

/* Handle --build2-metadata in main() (see also buildfile). */

#define main xmain
#include "main.c"
#undef main

#include <stdio.h>
#include <string.h>

int main (int argc, const char** argv)
{
 if (argc == 2 && strncmp (argv[1], "--build2-metadata=", 18) == 0)
 {
 printf ("# build2 buildfile foo\n");
 printf ("export.metadata = 1 foo\n");
 printf ("foo.name = [string] foo\n");
 ...
 return 0;
 }

 return xmain (argc, argv);
}

The idea here is to rename the original main() with the help of the C preprocessor and

provide our own main() which, after handling --build2-metadata calls the original.

One notable deal-breaker for this approach would be a C++ implementation of main() that

doesn’t have the explicit return. There is also a better chance in C++ for the main macro

to replace something unintended.

To complete this we also need to modify our buildfile to exclude main.c from compila

tion (since it is compiled as part of main-build2.c via the preprocessor inclusion). For

example:

exe{foo}: {h c}{** -main}
exe{foo}: c{main}: include = adhoc # Included in main-build2.c.

79Revision 0.18, February 2025 The build2 Packaging Guide

4.1.3 Modifying upstream source code with C/C++ preprocessor

https://github.com/build2/HOWTO/blob/master/entries/convey-additional-information-with-exe-lib.md

4.2 How do I deal with bad header inclusion practice?

This section explains how to deal with libraries that include their public, generically-named

headers without the library name as a subdirectory prefix. Such libraries cannot coexist,

neither in the same build nor when installed.

Specifically, as an illustration of the problem, consider the libfoo library with a public

header named util.h that is included as <util.h> (instead of, say, <libfoo/util.h>
or <foo/util.h>). If this library’s headers are installed directly into, say,

/usr/include, then if two such libraries happened to be installed at the same time, then

one will overwrite the other’s header. There are also problems in the non-installed case: if two

such libraries are used by the same project, then which <util.h> header gets included

depends on which library’s header search path ends up being specified first on the command

line (with the -I option).

These issues are severe enough that libraries with such inclusion issues cannot be published to

cppget.org without them being addressed in the build2 package. Thankfully, most library

authors these days use the library name as an inclusion prefix (or sometimes they have

headers that are decorated with the library name). However, libraries that do not follow these

guidelines do exist and this section describes how to change their inclusion scheme if you are

attempting to package one of them.

One notable consequence of changing the inclusion scheme is that it will no longer be possi

ble to use a system-installed version of the package (because it presumably still uses the

unqualified inclusion scheme). Note, however, that distributions like Debian and Fedora have

the same co-existence issue as we do and are generally strict about potential header clashes. In

particular, it is not uncommon to find Debian packages installing library headers into subdi

rectories of /usr/include to avoid such clashes. And if you find this to be the case for the

library you are packaging, then it may make sense to use the same prefix as used by the main

distributions for compatibility.

It is also possible that distributions disregard these considerations for some libraries. This

usually happens for older, well-known libraries that happened to be installed this way in the

early days and changing things now will be too disruptive. In a sense, it is understood that

such libraries effectively "own" the unqualified header names that they happen to be using. If

you think you are packaging such a library, get in touch to discuss this further since it may

make sense to also disregard this rule in cppget.org.

As a concrete example of the approach, let’s continue with libfoo that has util.h and

which upstream expects the users to include as <util.h>. The is what the upstream source

code layout may look like:

libfoo/
|-- include/
|Â Â ·-- util.h
·-- src/
 ·-- ...

Revision 0.18, February 202580 The build2 Packaging Guide

4.2 How do I deal with bad header inclusion practice?

https://cppget.org/
https://build2.org/community.xhtml#help
https://cppget.org/

Our plan is to change the inclusion scheme in the build2 package from <util.h> to

<libfoo/util.h>. To this effect, we use a slightly modified layout for our package (see

Craft bdep new command line to create package on how to achieve it):

libfoo/
|-- include/
|Â Â ·-- libfoo/
|Â Â ·-- util.h -> ../../../upstream/include/util.h
·-- src/
 ·-- ... -> ../../upstream/src/...

The installation-related section in our header buildfile will look like this:

Install into the libfoo/ subdirectory of, say, /usr/include/
recreating subdirectories.
#
{hxx ixx txx}{*}:
{
 install = include/libfoo/
 install.subdirs = true
}

In the source buildfile we will most likely need to add the include/libfoo header

search path since the upstream source files continue to include public headers without the

library prefix (there should be no harm in that and it’s not worth modifying them):

Build options.
#
out_pfx_inc = [dir_path] $out_root/include/
src_pfx_inc = [dir_path] $src_root/include/
out_pfx_src = [dir_path] $out_root/src/
src_pfx_src = [dir_path] $src_root/src/

Unqualified (without <libfoo/...>) header search paths.
#
out_pfx_inc_unq = [dir_path] $out_root/include/libfoo
src_pfx_inc_unq = [dir_path] $src_root/include/libfoo

cxx.poptions =+ "-I$out_pfx_src" "-I$src_pfx_src" \
 "-I$out_pfx_inc" "-I$src_pfx_inc" \
 "-I$out_pfx_inc_unq" "-I$src_pfx_inc_unq"

It is also possible that public headers include each other as <util.h> rather than the more

common "util.h". If that’s the case, then we need to fix that and there are two ways to do

it. The first approach is to patch the public headers to include each other with the library

prefix (that is, <libfoo/util.h>, etc). See How do I patch upstream source code? for

details.

The second approach is to support including public headers both ways, that is, as

<libfoo/util.h> and as <util.h>. This will not only solve the above problem (public

headers including each other), but also support any existing code that uses this library and

most likely includes its headers the old way, without the prefix.

81Revision 0.18, February 2025 The build2 Packaging Guide

4.2 How do I deal with bad header inclusion practice?

There is, however, a major drawback to doing that: while the installation of the library can

now co-exist with other libraries (because we install its public headers into, say,

/usr/include/libfoo), it may still not be usable in combination with other libraries

from the same build (because we still add the unqualified header search path).

If you still want to provide this dual inclusion support, the way to achieve it is by exporting

the unqualified header search path and also adding it to the pkg-config files (see How do I

handle extra header installation subdirectory? for background on the latter). For example:

Export options.
#
lib{foo}:
{
 cxx.export.poptions = "-I$out_pfx_inc" "-I$src_pfx_inc" \
 "-I$out_pfx_inc_unq" "-I$src_pfx_inc_unq"
 cxx.export.libs = $intf_libs
}

Make sure headers installed into, say, /usr/include/libfoo/
can also be included without the directory prefix for backwards
compatibility.
#
lib{foo}: cxx.pkgconfig.include = include/ include/libfoo/

4.3 How do I handle extra header installation subdirectory?

This section explains how to handle an additional header installation subdirectory. As an illus

tration of the problem, consider the libfoo example from the previous sections (see the Fill

with upstream source code step for a refresher). In that example the library headers are

included as <foo/util.hpp> and installed as, say, /usr/include/foo/util.hpp.

In this scheme the installed header inclusion works without requiring any extra steps from our

side because the compiler searches for header in /usr/include by default.

However, some libraries choose to install their headers into a subdirectory of, say,

/usr/include but without having this subdirectory as part of the inclusion path (foo/ in

<foo/util.hpp>). The two typical reasons for this are support for installing multiple

versions of the same library side-by-side (for example,

/usr/include/foo-v1/foo/util.hpp) as well as not using the library name as the

inclusion subdirectory prefix and then having to hide the headers in a subdirectory due to

potential clashes with other headers (if installed directly into, say, /usr/include; see How

do I deal with bad header inclusion practice? for background).

In such cases the installed header inclusion does not work out of the box and we have to

arrange for an additional header search path to be added via pkg-config. Let’s use the

versioned library case to illustrate this technique. The relevant part from the header build
file will look like this:

Revision 0.18, February 202582 The build2 Packaging Guide

4.3 How do I handle extra header installation subdirectory?

Install into the foo-vN/foo/ subdirectory of, say, /usr/include/
recreating subdirectories.
#
{hxx ixx txx}{*}:
{
 install = include/"foo-v$version.major"/foo/
 install.subdirs = true
}

The part that we need to add, this time to the source buildfile, looks like this:

Make sure headers installed into, say, /usr/include/foo-vN/foo/
can be included as <foo/*.hpp> by overriding the header search
path in the generated pkg-config files.
#
lib{foo}: cxx.pkgconfig.include = include/"foo-v$version.major"/

The variable will be c.pkgconfig.include for a C library.

4.4 How do I handle headers without an extension?

If all the headers in a project have no extension, then you can simply specify the empty

extension value for the hxx{} target type in build/root.build:

hxx{*}: extension =
cxx{*}: extension = cpp

Note, however, that using wildcard patterns for such headers in your buildfile is a bad

idea since such a wildcard will most likely pick up other files that also have no extension

(such as buildfile, executables on UNIX-like systems, etc). Instead, it’s best to spell the

names of such headers explicitly. For example, instead of:

lib{hello}: {hxx cxx}{*}

Write:

lib{hello}: cxx{*} hxx{hello}

If only some headers in a project have no extension, then it’s best to specify the non-empty

extension for the extension variable in build/root.build (so that you can still use

wildcards for headers with extensions) and spell out the headers with no extension explicitly.

Continuing with the above example, if we have both the hello.hpp and hello headers,

then we can handle them like this:

hxx{*}: extension = hpp
cxx{*}: extension = cpp

lib{hello}: {hxx cxx}{*} hxx{hello.}

Notice the trailing dot in hxx{hello.} – this is the explicit "no extension" specification.

See Targets and Target Types for details.

83Revision 0.18, February 2025 The build2 Packaging Guide

4.4 How do I handle headers without an extension?

4.5 How do I expose extra debug macros of a library?

Sometimes libraries provide extra debugging facilities that are usually enabled or disabled

with a macro. For example, libfoo may provide the LIBFOO_DEBUG macro that enables

additional sanity checks, tracing, etc. Normally, such facilities are disabled by default.

While it may seem like a good idea to detect a debug build and enable this automatically, it is

not: such facilities usually impose substantial overheads and the presence of debug informa

tion does not mean that performance is not important (people routinely make optimized builds

with debug information).

As a result, the recommended approach is to expose this as a configuration variable that the

consumers of the library can use (see Project Configuration for background). Continue with

the libfoo example, we can add config.libfoo.debug to its build/root.build:

build/root.build

config [bool] config.libfoo.debug ?= false

And then define the LIBFOO_DEBUG macro based on that in the buildfile:

src/buildfile

if $config.libfoo.debug
 cxx.poptions += -DLIBFOO_DEBUG

If the macro is also used in the library’s interface (for example, in inline or template func

tions), then we will also need to export it (see Adjust source buildfile: build and export

options for details):

src/buildfile

if $config.libfoo.debug
{
 cxx.poptions += -DLIBFOO_DEBUG
 lib{foo}: cxx.export.poptions += -DLIBFOO_DEBUG
}

If the debug facility in question should be enabled by default even in the optimized builds (in

which case the macro usually has the NO_DEBUG semantics), the other option is to hook it up

to the standard NDEBUG macro, for example, in the library’s configuration header file.

Note that such .debug configuration variables should primarily be meant for the user to

selectively enable extra debugging support in certain libraries of their build. However, if your

project depends on a number of libraries with such extra debugging support and it generally

makes sense to also enable this support in dependencies if it is enabled in your project, then

you may want to propagate your .debug configuration value to the dependencies (see the

depends package manifest value for details on dependency configuration). You,

however, should still allow the user to override this decision on the per-dependency basis.

Revision 0.18, February 202584 The build2 Packaging Guide

4.5 How do I expose extra debug macros of a library?

Continuing with the above example, let’s say we have libbar with

config.libbar.debug that depends on libfoo and wishes by default to enable debug

ging in libfoo if it is enabled in libbar. This is how we can correctly arrange for this in

libbar’s manifest:

depends:
\
libfoo ^1.2.3
{
 # We prefer to enable debug in libfoo if enabled in libbar
 # but accept if it’s disabled (for example, by the user).
 #
 prefer
 {
 if $config.libbar.debug
 config.libfoo.debug = true
 }

 accept (true)
}
\

4.6 How do I deal with tests that don’t terminate?

If upstream tests don’t terminate in a reasonable time (or at all), then your CI jobs will be

failing with timeouts.

Naturally, we cannot afford tests to run indefinitely or unreasonably long on our CI infrastruc

ture and, as a result, we impose a timeout on tests execution. Currently it is 25 minutes.

If you find yourself in this situation, the first step is to examine such tests for a mechanism,

typically a command line option, that allows you to set a limit on test execution, such as a

time limit, number of test iterations, etc.

If there is an option, then we can pass it with test.options (see Testing for background):

exe{driver}: test.options = --iterations 100

If, however, there is no mechanism for limiting upstream test execution, then the last resort is

to set a test execution timeout that is treated as success. For details on how to achieve this see

How do I sanitize the execution of my tests?

4.7 How do I deal with compiler/linker running out of RAM?

If a third-party project contains very large/complex translation units or is linking a large

number of object files, then the compiler or linker may run out of memory, especially if

compilation/linking is performed in parallel with other compilation/linking jobs. For compila

tion, this is normally triggered when compiling with optimization enabled. For example, on

Linux with GCC this could manifest in an error like this:

85Revision 0.18, February 2025 The build2 Packaging Guide

4.6 How do I deal with tests that don’t terminate?

https://github.com/build2/HOWTO/blob/master/entries/sanitize-test-execution.md

Out of memory: Killed process 1857 (cc1plus) ... pgtables:13572kB ...

The recommended way to deal with such issues is to serialize the compilation or linking of the

targets in question. Specifically, both the C/C++ compile and link rules recognize the

cc.serialize boolean variable which instructs them to compile/link serially (as opposed

to in parallel) with regards to any other recipe. For example:

obj{memory-hog}: cc.serialize = true
exe{very-large}: cc.serialize = true

To identify which source files require a large amount of RAM, build serially (-s) with opti

mization enabled while watching the amount of RAM used by the compiler. Similarly, for

linking binaries, watch the amount of RAM used by the linker.

5 Packaging FAQ

5.1 Publishing FAQ

5.1.1 Why is my package in alpha rather than stable?

If your package uses a semver version (or semver-like, that is, has three version components)

and the first component is zero (for example, 0.1.0), then, according to the semver specifi

cation, this is an alpha version and bdep-publish(1) automatically published such a

version to the alpha section of the repository.

Sometimes, however, in a third-party package, while the version may look like semver,

upstream may not assign the zero first component any special meaning. In such cases you can

override the bdep-publish behavior with the --section option, for example:

$ bdep publish --section=stable

Note that you should only do this if you are satisfied that by having the zero first component

upstream does not imply alpha quality. Getting an explicit statement to this effect from

upstream is recommended.

5.1.2 Where to publish if package requires staged toolchain?

If your package requires the staged toolchain, for example, because it needs a feature or

bugfix that is not yet available in the released toolchain, then you won’t be able to publish it

to cppget.org. Specifically, if your package has the accurate build2 version constraint

and you attempt to publish it, you will get an error like this:

error: package archive is not valid
 info: unable to satisfy constraint (build2 >= 0.17.0-) for package foo
 info: available build2 version is 0.16.0

Revision 0.18, February 202586 The build2 Packaging Guide

5 Packaging FAQ

https://build2.org/community.xhtml#stage

There are three alternative ways to proceed in this situation:

1. Wait until the next release and then publish the package to cppget.org.

2. If the requirement for the staged toolchain is "minor", that is, it doesn’t affect the

common functionality of the package or only affects a small subset of platforms/compil

ers, then you can lower the toolchain version requirement and publish the package to

cppget.org. For example, if you require the staged toolchain because of a bugfix that

only affects one platform, it doesn’t make sense to delay publishing the package since it

is perfectly usable on all the other platforms in the meantime.

3. Publish it to queue.stage.build2.org, the staging package repository. This repository

contain new packages that require the staged toolchain to work and which will be auto

matically moved to cppget.org once the staged version is released. The other advan

tage of publishing to this repository (besides not having to remember to manually publish

the package once the staged version is released) is that your package becomes available

from an archive repository, which is substantially faster than a git repository.

To publish to this repository, use the following bdep-publish command line:

$ bdep publish --repository=https://stage.build2.org ...

5.1.3 Why "project owner authentication failed" while publishing?

If you are getting the following error while attempting to publish a new version of a package:

$ bdep publish
...
error: project owner authentication failed

Then this means the remote git repository you are using does not match the one from which

you (or someone else) has published the initial version of the package.

In build2 we use the ownership of the package git repository as a proxy for the ownership

of the package name on cppget.org. Specifically, when you publish the package for the first

time, we record the git URL for its package repository. And any further versions of this

package can only be submitted by someone who has write access to this repository. See

bdep-publish(1) for details.

Based on this background, the first step you need to take when getting the above owner

authentication error is to understand its cause. For that, first use the git-config command

to see the URL you are using locally:

$ git config --get remote.origin.url

Then look in the git repositories that back cppget.org and queue.cppget.org and find the

URL that is recorded in the owners/ subdirectory in the corresponding

package-owner.manifest file.

87Revision 0.18, February 2025 The build2 Packaging Guide

5.1.3 Why "project owner authentication failed" while publishing?

https://queue.stage.build2.org/
https://cppget.org/
https://github.com/cppget/
https://cppget.org/
https://queue.cppget.org/

Note that your local URL will normally be SSH while the recorded URL will always be

HTTPS. Provided that the host names match, the part to look in for differences is the path

component. One common cause of a mismatch is the missing .git extension. For example

(local first, recorded second):

git@github.com:build2-packaging/zstd
https://github.com/build2-packaging/zstd.git

In this case adding the missing extension to the local URL should fix the error.

If, however, the discrepancy is expected, for example, because you have renamed the package

repository or moved it to a new location, the ownership information will need to be updated

manually. In this case feel free to submit a pull request with the necessary changes or get in

touch.

6 Package Review

Due to the complexity of packaging C/C++ software and to maintain a standard of quality,

package submissions must be reviewed by someone knowledgeable in build2 and experi

enced in packaging third-party software before they can be deemed stable and moved from the

testing to the stable section of the cppget.org repository. This applies to initial package

submissions, new versions, and new revisions. This chapter describes the review process.

First, let’s recap the package transition policies from queue.cppget.org to cppget.org and

between the various sections of cppget.org.

All three types of submissions (initial, new version, and new revision) are performed with

bdep-publish(1) and automatically placed into queue.cppget.org where they are built

and tested as archive packages in the same set of build configuration as cppget.org.

Publishing the package into the queue is the only automatic step and all other transitions are

currently performed manually after review or evaluation by a build2 core team member

(though some steps may be automated in the future).

When the package is published to queue.cppget.org, it ends up in one of the three sections:

alpha, beta, or testing. The destination section is normally determined automatically

by bdep-publish(1) based on the package version: alpha semver versions go to alpha,

beta – to beta, and the rest (as well as non-semver versions) go to testing.

If the package published to queue.cppget.org successfully builds in at least one build configu

ration, then it is migrated to cppget.org. When the package is migrated from queue.cppget.org,

it is placed into the corresponding section of cppget.org, that is, a package from the alpha
section of the former go to alpha of the latter, beta – to beta, and testing – to

testing.

Revision 0.18, February 202588 The build2 Packaging Guide

6 Package Review

https://build2.org/community.xhtml#help
https://build2.org/community.xhtml#help
https://cppget.org/
https://queue.cppget.org/
https://cppget.org/
https://cppget.org/?about
https://queue.cppget.org/
https://cppget.org/
https://queue.cppget.org/
https://queue.cppget.org/?about
https://queue.cppget.org/
https://cppget.org/
https://queue.cppget.org/
https://cppget.org/

If the package was migrated to either the alpha or beta section, then this is its final desti

nation. If, however, the package was placed into the testing section, then it stays there for

some time (at least a week) to allow further testing and review by any interested users. It is

then migrated to the stable section provided the following conditions are met:

1. The package has at least one positive review that was performed by an experienced

build2 user.

2. There are no serious issues reported with the package based on further testing.

If the package has no reviews, then it will remain in the testing section until reviewed,

potentially indefinitely. Likewise, if the package has a negative review that identified block

ing issues, then they must be addressed by the package author in a revision, published to

queue, and re-reviewed. Until then the package will remain in testing but in severe cases

(for example, security vulnerability and no forthcoming fix), it may also be dropped.

If the package has both positive and negative reviews, then the contradictions will be recon

ciled by the build2 core team members.

Packages in the alpha and beta sections can also be reviewed and a negative review may

lead to the package being dropped in severe cases.

For completeness, let’s also mention the legacy section of cppget.org. A package that is no

longer maintained (either by upstream or by the build2 project) may be moved to legacy
for two primary reasons: to signal to the users that it has serious issues (such as security

vulnerabilities) and/or not to waste CI resources on building it.

How are the transitions effected, exactly? Both queue.cppget.org and cppget.org package

repositories are backed by git repositories hosted at github.com/cppget/. Each transition

described above (including the initial submission by bdep-publish(1)) is recorded as a

commit in one or both of these repositories (study their commit histories to get a sense of how

this works).

While all the transitions can be performed manually by moving files around and using git
directly, the manage script in bpkg-util provides a high-level interface for the common

transitions.

Note also that the person doing a review and the person effecting a package transition need

not be the same. For security, package transitions can currently only be performed by the

build2 core team members.

With this background, let’s now turn to the review process. At the outset you may be wonder

ing why perform it so late in the packaging process when the final version has been released

and published. Specifically, would it not be better to review some form of work-in-progress so

that any issues can be corrected before releasing the final version?

89Revision 0.18, February 2025 The build2 Packaging Guide

6 Package Review

https://cppget.org/
https://queue.cppget.org/
https://cppget.org/
https://github.com/cppget/
https://github.com/build2/bpkg-util

There are several reasons why we prefer to review the released version. Firstly, we want to

base our reviews on the build results of the final package archives as they will be published to

cppget.org. Basing reviews on anything other than that means we will need to re-examine

them when the final version is submitted.

The second reason is consideration for the reviewer. Reviewing other people’s packaging

work, often for software you personally have no interest in using, is a thankless and often

frustrating job (things tend to get frustrating when you have to point out the same basic

mistakes over and over again). As a result, we want to make this job as streamlined as possi

ble without (hopefully) multiple rounds of reviews. Also, the finality of the submission will

hopefully encourage authors to try to submit finished work rather than something incomplete,

for example, in the hope that the reviewer will help them fix it into shape.

Having said that, nothing prevents members of the build2 community from performing ad

hoc pre-reviews, for example, for packaging efforts of new authors that require some help and

guidance.

For background, this review process was heavily inspired by the Linux kernel development.

Specifically, Linux developers review proposed changes and mark them with a number of

tags, such as Reviewed-by. Below is the relevant quote from that document that gives a

good description for what it means to offer a Reviewed-by tag and that matches many of

the aspects of this review policy:

Reviewerâs statement of oversight

By offering my Reviewed-by tag, I state that:

1. I have carried out a technical review of this patch to evaluate its appropriateness and

readiness for inclusion into the mainline kernel.

2. Any problems, concerns, or questions relating to the patch have been communicated

back to the submitter. I am satisfied with the submitterâs response to my comments.

3. While there may be things that could be improved with this submission, I believe that it

is, at this time, (1) a worthwhile modification to the kernel, and (2) free of known issues

which would argue against its inclusion.

4. While I have reviewed the patch and believe it to be sound, I do not (unless explicitly

stated elsewhere) make any warranties or guarantees that it will achieve its stated

purpose or function properly in any given situation.

A Reviewed-by tag is a statement of opinion that the patch is an appropriate modification

of the kernel without any remaining serious technical issues. Any interested reviewer (who

has done the work) can offer a Reviewed-by tag for a patch. This tag serves to give credit

to reviewers and to inform maintainers of the degree of review which has been done on the

patch. Reviewed-by tags, when supplied by reviewers known to understand the subject

area and to perform thorough reviews, will normally increase the likelihood of your patch

getting into the kernel.

Revision 0.18, February 202590 The build2 Packaging Guide

6 Package Review

https://cppget.org/
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#using-reported-by-tested-by-reviewed-by-suggested-by-and-fixes

Before we delve into the review process, let’s also discuss how one finds packages to review.

There are two common strategies: The first is to look at the packages that you are using in

your own projects and, if there are any unreviewed versions that you would like to use, to

consider reviewing them. Alternatively, if you would like to help the build2 community by

reviewing packages, pick any from the unreviewed list. For both cases you could use

Advanced Package Search, limiting the result to specific packages in the first case. For

example, you could search for unreviewed packages in the testing section.

The review process for the three types of submissions (initial, new version, and new revision)

are described in the following sections.

At this stage of the cppget.org repository evolution, where it primarily contains third-party

packages, we are only concerned with reviewing the build and packaging support, ignoring

everything else (source code, documentation, etc). This, however, may change in the future.

6.1 Reviewing initial package submission

A review process for an initial package submission is the most elaborate since we need to

review everything from scratch.

6.1.1 Create review issue

The first step in reviewing the initial package submission is to create a review issue on the

package repository. The issue title should be in the following form (here and below X.Y.Z is

the version being reviewed):

Review of the ‘X.Y.Z‘ version (initial package submission)

Before actually creating the issue you may also want to check if someone else is already

reviewing this package and thus has already created the issue. While there is nothing wrong

with having multiple reviews, you may want to consider picking something else to review in

order to increase coverage.

For issue description, copy and paste the contents of packaging-initial-review-checklist.md.

Then create the issue.

6.1.2 Create review pull request

The only place where GitHub supports code reviews is a pull request (PR). As a result, we

create a dummy draft pull request against the master/main branch whose only purpose is to

serve as a code review vehicle. The procedure is as follows:

1. Clone the package repository (referred to as <repo>) locally:

git clone --recurse-submodules --shallow-submodules git@github.com:build2-packaging/<repo>.git
cd <repo>

2. Find the first commit:

91Revision 0.18, February 2025 The build2 Packaging Guide

6.1 Reviewing initial package submission

https://cppget.org/?advanced-search
https://cppget.org/?advanced-search&rp=pkg%3Acppget.org%2Ftesting&rv=unreviewed
https://cppget.org/
https://raw.githubusercontent.com/build2/build2-toolchain/master/doc/packaging-initial-review-checklist.md

git rev-list --all | tail -1

Make sure it is the canonical Initialize package repository commit from

the Initialize package repository with bdep new step:

git log -p "$(git rev-list --all | tail -1)"

The changes made in this commit will not be part of the review so we need to make sure

nothing was lumped into it beside the project infrastructure created by bdep-new. We

have to skip this commit because the two branches we will be creating the pull request

from (see below) must have common history.

3. Create the review branch:

git branch review-X.Y.Z "$(git rev-list --all | tail -1)"
git push origin review-X.Y.Z

4. Create pull request:

1. Open the GitHub link printed by the above git-push command.

2. Change base: branch to review-X.Y.Z, compare: branch to master/main.

3. For PR title use:

Dummy draft pull request for version ‘X.Y.Z‘ review (do not merge)

4. In PR description link to the review issue (<N> is the review issue number):

See review issue #<N>.

5. Change the creation mode to Create draft pull request and create the

PR.

The review pull request is setup as if we wanted to merge the master/main branch into

review-X.Y.Z, which generally doesn’t make much sense (and is the reason why this PR

should never be merged). However, this setup allows us to do code reviews of all the changes

since the first commit. What’s more, if the package author addresses some issues by releasing

revisions, the revision commits will be automatically added to this PR and their changes avail

able to further review.

6.1.3 Go through review checklist

Go through the review checklist in the review issue ticking off successfully completed items.

While reviewing an item you may identify an issue or have something to note. A note is a

general observation that is worth mentioning to the package author. For example, while

checking this item:

[] If library without lib prefix, no clashes with executable names

You may note that while there are no clashes with executables installed in PATH locations,

there is a package in Debian that has a private executable named like this. So you may make a

note along these lines:

Revision 0.18, February 202592 The build2 Packaging Guide

6.1.3 Go through review checklist

There is a file in Debian named ftest. It’s not an executable installed
in a PATH location so I guess having this library named without the
lib prefix is technically allowed, though not ideal. Consider in the
future to follow the recommendation in the packaging guide and name
libraries with the lib prefix to sidestep such considerations.

An issue can be blocking or non-blocking. As the name suggests, a blocking issue fails the

review and must be addressed in a revision. A non-blocking issue does not fail the review and

can be optionally addressed in a revision or in the next version.

Whether an issue is blocking or not is a judgment call of the reviewer (which is one of the

reasons why a reviewer needs to be knowledgeable in build2 and have experience packag

ing third-party projects). The overall guideline is to consider two dimensions: severity and

impact. An issue that would prevent a large proportion of users from using the package is

most likely blocking. Also, conceptual issues, like using compile/link options that should not

be specified in buildfiles, are always blocking. Finally, also consider whether it will be

possible to fix the issue later without breaking backwards-compatibility. For example, renam

ing the package once it’s published will be disruptive. If you are unsure whether an issue

should be considered blocking, contact other reviewers to discuss.

A note or an issue can be communicated to the package author in two ways: you can add it to

the outcome comment for the review issue (created in the following step) or you can add it as

a code review comment in the review PR.

The first way is more appropriate for general notes (like the example above) and issues (like

missing README file). While code review comments work best when the issue is with a

specific code fragment that can be pointed to.

To add code review comments, go to the review PR created in the previous step, select the

"Files changed" tab, and start the code review. For each comment, specify whether it is a

blocking issue, a non-blocking issue, or a note.

6.1.4 Add review outcome comment

Once you are done with the checklist, add a comment to the review issue with the outcome to

notify the package author.

If the review was successful (no blocking issues), start the comment with the following para

graph (here <AUTHOR> is the package author’s user name on GitHub):

@<AUTHOR> Thank you for your submission! This version has passed the
review. Below you will find a list of non-blocking issues and notes
that have been identified during review. You can address the issues
with a revision if you wish or, alternatively, in the next version.

Adjust the last two sentences accordingly if there are no issues/notes.

If, however, there are blocking issues, start it with the following:

93Revision 0.18, February 2025 The build2 Packaging Guide

6.1.4 Add review outcome comment

https://github.com/build2/HOWTO/blob/master/entries/compile-options-in-buildfile.md
https://github.com/build2/HOWTO/blob/master/entries/compile-options-in-buildfile.md

@<AUTHOR> Thank you for your submission! Unfortunately there are
blocking issues and this version has failed the review. The list
of blocking issues is provided below. Please consider addressing
them (as well as the non-blocking issues, if you wish) in a
revision and publishing it to continue this review.

Adjust the last sentence accordingly if there are no non-blocking issues.

Then continue the comment with a list of blocking issues, non-blocking issues, and finally

notes (remove sections that have no items):

Blocking issues:

...

Non-blocking issues:

...

Notes:

...

If one or more issues or notes are captured as code review comments, then add a link to the

review PR. Otherwise, describe them in the comment. For example (here <NUM> is the review

PR number):

Blocking issues:

* A number of blocking issues described in the code review: #<NUM>

Non-blocking issues:

* A number of non-blocking issues described in the code review: #<NUM>

Notes:

* There is a file in Debian named ftest. It’s not an executable installed
 in a PATH location so I guess having this library named without the
 lib prefix is technically allowed, though not ideal. Consider in the
 future to follow the recommendation in the packaging guide and name
 libraries with the lib prefix to sidestep such considerations.

6.1.5 Finish successful review

If the review is successful and once the outcome comment has been added, edit the issue

description and remove the first sentence that says the review is in progress.

Also close (note: not merge) the review PR and, if there are no non-blocking issues, the

review issue.

If there are non-blocking issues, then we leave the review issue open as a reminder to the

package author to address them in the next version.

Revision 0.18, February 202594 The build2 Packaging Guide

6.1.5 Finish successful review

Finally, send a notification email to review@cppget.org as described in Send review

notification email.

6.1.6 Continue with unsuccessful review

If the review is unsuccessful and once the outcome comment has been added, send a notifica

tion email to review@cppget.org as described in Send review notification email.

Then wait for the package author to address blocking issues and publish a revision (which will

be reflected in the review PR). Also watch out for any questions in the review issue or code

review comments in the PR.

Once the revision is published, re-review the relevant changes and confirm they address

blocking issues. Check off any outstanding items in the review checklist and also note which

non-blocking issues were addressed for the new outcome comment.

Then continue from the Add review outcome comment step by adding a new outcome

comment. If all the blocking issues were addressed and no new blocking issues were identi

fied, then the outcome is successful. Otherwise, it is unsuccessful and another review round is

required: wait for another revision/comments, re-review, add another outcome comment, etc.

6.1.7 Send review notification email

In case of both successful and unsuccessful reviews, send an email to

review@cppget.org in order to notify the build2 core team about the outcome. The

requirements for this email are as follows:

The From field should contain your real name. Your review is a statement of oversight

and without a real name it doesn’t have much value.

The Subject filed should be in the following form:

Review <PROJECT> <VERSION>

Here <PROJECT> is the project name to which the reviewed package or packages

belong and <VERSION> is their version. Note that all the packages in a multi-package

project must be reviewed together.

In the body of the email include the following information:

List of packages reviewed.

Review outcome: pass or fail

Link to the outcome comment in the review issue.

For example:

From: John Doe <john@example.org>
Subject: Review spdlog 1.14.1+2

Packages reviewed:

95Revision 0.18, February 2025 The build2 Packaging Guide

6.1.6 Continue with unsuccessful review

spdlog
spdlog-tests
spdlog-bench

Review outcome: fail

Outcome link:

https://github.com/build2-packaging/spdlog/issues/1#issuecomment-123

For a successful review of a new revision or version of an existing package that has no

non-blocking issues or notes, there may be no review issue (see Reviewing new version

submission for details). In such cases the outcome link may be omitted.

The review outcome is recorded in the package metadata that is stored in the backing git

repository. See Package Review Manifest for details.

6.2 Reviewing new version submission

The following discussion assumes that you have read through Reviewing initial package

submission.

The extent of changes to the build and packaging support in a new version can range from no

changes, to only minor changes, to a complete rewrite. As a result, the review procedure for a

new version varies depending on the changes and broadly consists of the following three alter

natives:

1. If there are no substantial changes and no issues (blocking or non-blocking), then we can

skip creating the review issue and go straight to the notification email.

2. If there are no substantial changes but there are issues (blocking or non-blocking), then

we create the review issue but skip the checklist. Creating the review PR is also optional.

3. If there are substantial changes then we should use the Reviewing initial package

submission procedure to re-review the package from scratch with the checklist.

6.2.1 Determine the extent of changes

In order to select the appropriate review procedure we need to determine the extent of the

changes in the new version compared to the previous version, which we will refer to as the

"base version".

The previous version on which we are basing this review needs to be already reviewed.

Failing that, reviewing the difference doesn’t make much sense. If the immediately preceding

version is not reviewed, you have two choices: either review it first or base your review on an

earlier, already reviewed version. If its review is unsuccessful, then you will need to pay

attention to the issues identified in the previous review.

The recommended next step is to get a sense of the changes by examining the difference

between the base and the new versions. This can be done in several ways. You could clone the

package repository locally and use your favorite git tool (git-diff, gitk, etc) to view

Revision 0.18, February 202596 The build2 Packaging Guide

6.2 Reviewing new version submission

the cumulative changes between the two release commits. Alternatively, you can use the

GitHub commit comparison support to compare the two release tags:

https://github.com/build2-packaging/<project>/compare/v1.2.0...v1.3.0

Because the source code for the package comes from a git submodule, the changes that we

see will be conveniently limited to the build and packaging support plus the related documen

tation.

Study the changes and determine which review procedure is appropriate. While all the consid

eration described in Reviewing initial package submission (and its checklist) apply to new

versions, additional attention must be paid to backwards compatibility. Unfortunately, it’s not

uncommon for inexperienced package authors to break backwards compatibility at the build

level (for example, by renaming exported targets, configuration variables, etc) even though

the upstream respects its backwards compatibility obligations as signaled by the version.

The common case when reviewing a new version is no changes to the build and packaging

support other than the version increment in manifest. If that’s the case or you don’t see any

issues with other changes, then you can proceed directly to Send review notification email. In

this case you can omit the outcome link.

Another common case that can use the same shortcut is when the upgrade to the new version

was contributed as a PR by someone other than the package author. If such a PR was

reviewed and merged by the package author, then this same review can also count as a

package review and the package author can Send review notification email using the PR as

the outcome link.

At the other, thankfully more rare, extreme you may find the package substantially changed or

completely rewritten. This, for example, can happen in response to a major version release if

upstream decides to re-architect their source code layout. But it can also be the result of more

benign changes. For example, if upstream adds a dependency on a testing framework in its

tests, then the build2 package will need to split the tests into a separate package. In case of

such substantial changes it is recommended to follow the Reviewing initial package submis

sion procedure.

With the two extremes covered, this leaves the case of some changes that have issues, block

ing or non-blocking. In this case the next step is to create the review issue.

6.2.2 Create review issue

If the changes in the new version have some issues, then we create the review issue on the

package repository. The issue title should be in the following form (here and below X.Y.Z is

the version being reviewed):

Review of the ‘X.Y.Z‘ version

97Revision 0.18, February 2025 The build2 Packaging Guide

6.2.2 Create review issue

Before actually creating the issue you may also want to check if someone else is already

reviewing this package and thus has already created the issue. While there is nothing wrong

with having multiple reviews, you may want to consider picking something else to review in

order to increase coverage.

Unlike the initial package submission, here we don’t use the review checklist since most items

won’t apply (but you are welcome to refer to it if you like). Instead, you can put your feed

back directly in the issue description, similar to Add review outcome comment.

If you find it helpful, you can also create a review pull request similar to Create review pull

request. In this case use the base version’s release commit as the starting commit for the

review branch.

6.2.3 Finish successful review

If the review is successful (no blocking issues), close (note: not merge) the review PR if one

was created and, if there are no non-blocking issues, the review issue.

If there are non-blocking issues, then we leave the review issue open as a reminder to the

package author to address them in the next version.

Finally, send a notification email to review@cppget.org as described in Send review

notification email.

6.2.4 Continue with unsuccessful review

If the review is unsuccessful, send a notification email to review@cppget.org as

described in Send review notification email.

Then wait for the package author to address blocking issues and publish a revision (which will

be reflected in the review PR, if any). Also watch out for any questions in the review issue or

code review comments in the PR.

Once the revision is published, re-review the relevant changes and confirm they address

blocking issues. Also note which non-blocking issues were addressed for the outcome

comment.

Then continue from the Create review issue step except this time adding your feedback as an

outcome comment rather than in the issue description. If all the blocking issues were

addressed and no new blocking issues were identified, then the outcome is successful. Other

wise, it is unsuccessful and another review round is required: wait for another revi

sion/comments, re-review, add another outcome comment, etc.

Revision 0.18, February 202598 The build2 Packaging Guide

6.2.3 Finish successful review

6.3 Reviewing new revision submission

The procedure for reviewing a new revision submission is essentially the same as Reviewing

new version submission (including sending the notification email). However, there are the

additional requirement of the revision containing only minor changes and being strictly back

wards-compatible with the version it replaces. See Don’t make extensive changes in a revision

for background and details.

99Revision 0.18, February 2025 The build2 Packaging Guide

6.3 Reviewing new revision submission

	Preface
	1 Introduction
	1.1 Terminology

	2 Common Guidelines
	2.1 Setup the package repository
	2.1.1 Check if package repository already exists
	2.1.2 Use upstream repository name as package repository name
	2.1.3 Create package repository in personal workspace
	2.1.4 Initialize package repository with bdep new
	2.1.5 Add upstream repository as git submodule

	2.2 Create package and generate buildfile templates
	2.2.1 Decide on the package name
	2.2.2 Decide on the package source code layout
	2.2.3 Craft bdep new command line to create package
	2.2.4 Review and test auto-generated buildfile templates
	2.2.5 Create final package
	2.2.6 Adjust package version

	2.3 Fill package with source code and add dependencies
	2.3.1 Initialize package in build configurations
	2.3.2 Add dependencies
	2.3.3 Fill with upstream source code

	2.4 Adjust project-wide and source buildfiles
	2.4.1 Adjust project-wide build system files in build/
	2.4.2 Adjust source subdirectory buildfiles
	2.4.3 Adjust header buildfile
	2.4.4 Adjust source buildfile: overview
	2.4.5 Adjust source buildfile: cleanup
	2.4.6 Adjust source buildfile: dependencies
	2.4.7 Adjust source buildfile: public headers
	2.4.8 Adjust source buildfile: sources, private headers
	2.4.9 Adjust source buildfile: build and export options
	2.4.10 Adjust source buildfile: symbol exporting
	2.4.11 Adjust source buildfile: shared library version
	2.4.12 Adjust source buildfile: executables
	2.4.13 Adjust source buildfile: extra requirements
	2.4.14 Test library build

	2.5 Make smoke test
	2.5.1 Adjust project-wide build system files in tests/build/
	2.5.2 Convert generated test to library smoke test
	2.5.3 Make smoke test: executables
	2.5.4 Test locally
	2.5.5 Test locally: installation
	2.5.6 Test locally: distribution
	2.5.7 Commit and test with CI

	2.6 Replace smoke test with upstream tests
	2.6.1 Understand how upstream tests work
	2.6.2 Convert smoke test to upstream tests
	2.6.3 Test locally
	2.6.4 Commit and test with CI

	2.7 Add upstream examples, benchmarks, if any
	2.8 Adjust root files (buildfile, manifest, etc)
	2.8.1 Adjust root buildfile
	2.8.2 Adjust root buildfile: other subdirectories
	2.8.3 Adjust root buildfile: commit and test
	2.8.4 Adjust manifest
	2.8.5 Adjust manifest: summary
	2.8.6 Adjust manifest: license
	2.8.7 Adjust manifest: commit and test
	2.8.8 Adjust PACKAGE-README.md

	2.9 Adjust package repository README.md
	2.10 Release and publish
	2.10.1 Transfer package repository
	2.10.2 Release final version
	2.10.3 Publish released version

	2.11 Package version management
	2.11.1 New revision
	2.11.2 New version
	2.11.3 New version: create new work branch
	2.11.4 New version: open new version
	2.11.5 New version: update upstream submodule
	2.11.6 New version: review upstream changes
	2.11.7 New version: layout changes
	2.11.8 New version: new/old dependencies
	2.11.9 New version: new/old source files
	2.11.10 New version: changes to build system
	2.11.11 New version: other new/old files/subdirectories
	2.11.12 New version: review manifest and PACKAGE-README.md
	2.11.13 New version: review repository README.md
	2.11.14 New version: review/fix accumulated issues
	2.11.15 New version: test locally and with CI
	2.11.16 New version: merge, release, and publish
	2.11.17 New version/revision in old release series

	3 What Not to Do
	3.1 Don't write buildfiles from scratch, use bdep-new
	3.2 Avoid fixing upstream issues in the build2 package
	3.3 Avoid changing upstream source code layout
	3.4 Don't make library header-only if it can be compiled
	3.5 Don't bundle dependencies
	3.6 Don't build your main targets in the root buildfile
	3.7 Don't make extensive changes in a revision

	4 Packaging HOWTO
	4.1 How do I patch upstream source code?
	4.1.1 Modifying upstream source code manually
	4.1.2 Modifying upstream source code during build
	4.1.3 Modifying upstream source code with C/C++ preprocessor

	4.2 How do I deal with bad header inclusion practice?
	4.3 How do I handle extra header installation subdirectory?
	4.4 How do I handle headers without an extension?
	4.5 How do I expose extra debug macros of a library?
	4.6 How do I deal with tests that don't terminate?
	4.7 How do I deal with compiler/linker running out of RAM?

	5 Packaging FAQ
	5.1 Publishing FAQ
	5.1.1 Why is my package in alpha rather than stable?
	5.1.2 Where to publish if package requires staged toolchain?
	5.1.3 Why "project owner authentication failed" while publishing?

	6 Package Review
	6.1 Reviewing initial package submission
	6.1.1 Create review issue
	6.1.2 Create review pull request
	6.1.3 Go through review checklist
	6.1.4 Add review outcome comment
	6.1.5 Finish successful review
	6.1.6 Continue with unsuccessful review
	6.1.7 Send review notification email

	6.2 Reviewing new version submission
	6.2.1 Determine the extent of changes
	6.2.2 Create review issue
	6.2.3 Finish successful review
	6.2.4 Continue with unsuccessful review

	6.3 Reviewing new revision submission

