
The build2 Testscript Language

Copyright © 2014-2024 the build2 authors.

Permission is granted to copy, distribute and/or modify this document under the terms of the

MIT License.

Revision 0.17, April 2024

This revision of the document describes the build2 Testscript language 0.17.x series.

Table of Contents

.................. 1Preface

................. 11 Introduction

.............. 102 Build System Integration

............... 143 Model and Execution

................ 194 Lexical Structure

............... 235 Syntax and Semantics

................ 235.1 Notation

................ 245.2 Grammar

................. 275.3 Script

................. 275.4 Scope

................ 285.5 Scope-If

................ 285.6 Directive

............... 285.6.1 Include

............. 285.7 Setup and Teardown

................. 295.8 Test

................ 295.9 Variable

............... 295.10 Variable-If

............... 305.11 Variable-For

.............. 315.12 Variable-While

............... 315.13 Command

............... 325.14 Command-If

.............. 335.15 Command-For

.............. 345.16 Command-While

................ 345.17 Redirect

.............. 345.18 Input Redirect

.............. 355.19 Output Redirect

.............. 365.20 Here-Document

............... 375.21 Output Regex

................ 395.22 Cleanup

............... 405.23 Description

.................. 416 Builtins

................. 416.1 cat

................. 416.2 cp

................. 426.3 date

................. 436.4 diff

................. 436.5 echo

................. 436.6 env

................. 446.7 exit

................ 446.8 export

................ 456.9 false

................ 456.10 find

................. 456.11 ln

................ 466.12 mkdir

................. 466.13 mv

iRevision 0.17, April 2024 The build2 Testscript Language

Table of Contents

.................. 476.14 rm

................. 486.15 rmdir

.................. 486.16 sed

.................. 496.17 set

................. 506.18 sleep

................. 506.19 test

................ 506.20 timeout

................. 516.21 touch

................. 516.22 true

.................. 527 Style Guide

Revision 0.17, April 2024ii The build2 Testscript Language

Table of Contents

Preface

This document describes the build2 Testscript language. It starts with a discussion of the

motivation behind a separate domain-specific language for running tests and then introduces a

number of Testscript concepts with examples. The remainder of the document provides a

more formal specification of the language, including its integration into the build system,

conceptual model and execution, lexical structure, as well as syntax and semantics. The final

chapter describes the testing guidelines and the Testscript style as used in the build2 project

itself.

In this document we use the term Testscript (capitalized) to refer to the Testscript language.

Just testscript means code written in this language. For example: "We can pass additional

information to testscripts using target-specific variables." Finally, testscript refers to the

file name.

We also use the equivalent distinction between Buildfile (language), buildfile (code), and

buildfile (file).

1 Introduction

The build2 test module provides the ability to run an executable target as a test along

with passing options and arguments, providing the stdin input, as well as comparing the

stdout output to the expected result. For example:

exe{hello}: file{names.txt}: test.stdin = true
exe{hello}: file{greetings.txt}: test.stdout = true
exe{hello}: test.options = --greeting ’Hi’
exe{hello}: test.arguments = - # Read names from stdin.

This works well for simple, single-run tests. If, however, our testing required multiple runs

with varying inputs and/or analyzing output, traditionally, we would resort to using a scripting

language, for instance Bash or Python. This, however, has a number of drawbacks. Firstly,

this approach is not portable (there is no Bash or Python on Windows out of the box). It is also

hard to write concise tests in a general-purpose scripting language. The result is often a test

suite that has grown incomprehensible with everyone dreading adding new tests. Secondly, it

is hard to run such tests in parallel without major effort. Usually this involves having a sepa

rate script for each test and implementing some kind of a test harness.

Testscript is a domain-specific language for running tests. It vaguely resembles Bash and is

optimized for concise test description and fast execution by focusing on the following func

tionality:

Supplying input via command line and stdin.

Comparing to expected exit status.

Comparing stdout/stderr to expected output, including using regex.

Setup/teardown commands and automatic file/directory cleanups.

Simple (single-command) and compound (multi-command) tests.

1Revision 0.17, April 2024 The build2 Testscript Language

Preface

Test groups with common setup/teardown.

Test isolation for parallel execution.

Portable POSIX-like builtins subset.

Test documentation.

Note that Testscript is a test runner, not a testing framework for a particular programming

language. It does not concern itself with how the test executables themselves are imple

mented. As a result, it is mostly geared towards functional testing but can also be used for unit

testing if external input/output is required. Testscript is part of the build2 build system and

is implemented by its test module.

As a quick introduction to the Testscript’s capabilities, let’s properly test a "Hello, World"

program. For a simple implementation the corresponding buildfile might look like this:

exe{hello}: cxx{hello}

We also assume that the project’s bootstrap.build loads the test module which

implements the execution of testscripts.

To start, we create an empty file called testscript. To indicate that a testscript file tests a

specific target we simply list it as a target’s prerequisite, for example:

exe{hello}: cxx{hello} testscript

Let’s assume our hello program expects us to pass the name to greet as a command line

argument. And if we don’t pass anything, it prints an error followed by usage and terminates

with a non-zero exit code. We can test this failure case by adding the following line to the

testscript file:

$* 2>- != 0

While it sure is concise, it may look cryptic without an explanation. When the test module

runs tests, it passes to each testscript the path to the target of which this testscript is a prereq

uisite. So in our case the testscript will receive the path to our hello executable. The build

file can also pass along additional options and arguments (see Build System Integration for

details). Inside the testscript, all of this (target path, options, and arguments) are bound to the

$* variable. So, in our case, if we expand the above line, it would be something like this:

/tmp/hello/hello 2>- != 0

Or, if we are on Windows, something like this:

C:\projects\hello\hello.exe 2>- != 0

The 2>- redirect is the Testscript equivalent of 2>/dev/null that is both portable and

more concise (2 here is the stderr file descriptor). If we don’t specify it and our program

prints anything to stderr, then the test fails (unexpected output).

Revision 0.17, April 20242 The build2 Testscript Language

1 Introduction

The remainder of the command (!= 0) is the exit status check. If we don’t specify it, then the

test is expected to return zero exit code (which is equivalent to specifying == 0).

If we run our test, it will pass provided our program behaves as expected. One thing our test

doesn’t verify, however, is the diagnostics that gets printed to stderr (remember, we

ignored it with 2>-). Let’s fix that assuming this is the code that prints it:

cerr << "error: missing name" << endl
 << "usage: " << argv[0] << " <name>" << endl;

In Testscript you can compare output to the expected result for both stdout and stderr.

We can supply the expected result as either a here-string or here-document, both which can be

either literal or regex. The here-string approach works best for short, single-line output and we

will use it for another test in a minute. For this test let’s use the here-document since the

expected diagnostics has two lines:

$* 2>>EOE != 0
error: missing name
usage: hello <name>
EOE

Let’s decrypt this: the 2>>EOE is a here-document redirect with EOE (stands for

End-Of-Error) being the string we chose to mark the end of the here-document fragment. Next

comes the here-document fragment followed by the end marker.

Now, when executing this test, the test module will check two things: it will compare the

stderr output to the expected result using the diff tool and it will make sure the test

returns a non-zero exit code. Let’s give it a go:

$ b test
testscript:1:1: error: hello stderr doesn’t match expected
 info: stderr: test-hello/1/stderr
 info: expected stderr: test-hello/1/stderr.orig
 info: stderr diff: test-hello/1/stderr.diff
--- test-hello/1/stderr.orig
+++ test-hello/1/stderr
@@ -1,2 +1,2 @@
 error: missing name
-usage: hello <name>
+usage: /tmp/hello/hello <name>

While not what we hoped for, at least the problem is clear: the program name varies at

runtime so we cannot just hardcode hello in our expected output. How do we solve this?

The best fix would be to use the actual path to the target; after all, we know it’s the first

element in $*:

$* 2>>"EOE" != 0
error: missing name
usage: $0 <name>
EOE

3Revision 0.17, April 2024 The build2 Testscript Language

1 Introduction

You can probably guess what $0 expands to. But did you notice another change? Yes, those

double quotes in 2>>"EOE". Here is what’s going on: similar to Bash, single-quoted strings

(’foo’) are taken literally while double-quoted ones ("foo") have variable expansions,

escaping, and so on. In Testscript this semantics is extended to here-documents in a curious

way: if the end marker is single-quoted then the here-document lines are taken literally and if

it is double-quoted, then there can be variable expansions, etc. An unquoted end marker is

treated as single-quoted (note that this is unlike Bash where here-documents always have vari

able expansions).

This example illustrated a fairly common testing problem: output variability. In our case we

could fix it perfectly since we could easily calculate the varying part exactly. But often figur

ing out the varying part is difficult if not outright impossible. A good example would be a

system error message based on the errno code, such as file not being found. Different C

runtimes can phrase the message slightly differently or it can be localized. Worse, it can be a

slightly different error code, for example ENOENT vs ENOTDIR.

To handle output variability, Testscript allows us to specify the expected output as a regular

expression. For example, this is an alternative fix to our usage problem that simply ignores the

program name:

$* 2>>~/EOE/ != 0
error: missing name
/usage: .+ <name>/
EOE

Let’s explain what’s going here: to use a regex here-string or here-document we add the ~

redirect modifier. In this case the here-document end marker must start and end with the regex

introducer character of your choice (/ in our case). Any line inside the here-document frag

ment that begins with this introducer is then treated as a regular expression rather than a literal

(see Output Regex for details).

While this was a fairly deep rabbit hole for a first example, it is a good illustration of how

quickly things get complicated when testing real-world software.

Now that we have tested the failure case, let’s test the normal functionality. While we could

have used a here-document, in this case a here-string will be more concise:

$* ’World’ >’Hello, World!’

It’s also a good idea to document our tests. Testscript has a formalized test description that

can capture the test id, summary, and details. All three components are optional and how thor

oughly you document your tests is up to you.

The description lines precede the test command. They start with a colon (:), and have the

following layout:

Revision 0.17, April 20244 The build2 Testscript Language

1 Introduction

: <id>
: <summary>
:
: <details>
: ...

The recommended format for <id> is <keyword>-<keyword>... with at least two

keywords. The id is used in diagnostics, to name the test working directory, as well as to run

individual tests. It can only contain alphanumeric characters as well as underscores, pluses,

and minuses. The recommended style for <summary> is that of the git(1) commit

summary. The detailed description is free-form. Here are some examples (# starts a

comment):

Only id.
#
: missing-name
$* 2>>"EOE" != 0
...

Only summary.
#
: Test handling of missing name
...

Both id and summary.
#
: missing-name
: Test handling of missing name
...

All three: id, summary, and a detailed description.
#
: missing-name
: Test handling of missing name
:
: This test makes sure the program detects that the name to greet
: was not specified on the command line and both prints usage and
: exits with non-zero code.
...

The recommended way to come up with an id is to distill the summary to its essential

keywords by removing generic words like "test", "handle", and so on. If you do this, then both

the id and summary will convey essentially the same information. As a result, to keep things

concise, you may choose to drop the summary and only have the id (this is what we often do

in build2 tests). If the id is not provided, then it will be automatically derived from the line

number in testscript (we have already seen one in the earlier failed test diagnostics).

Either the id or summary (but not both) can alternatively be specified inline in the test

command after a colon (:), for example:

$* ’World’ >’Hello, World!’ : command-name

Similar to handling output, Testscript provides a convenient way to supply input to the test’s

stdin. Let’s say our hello program recognizes the - argument as an instruction to read the

names from stdin. This is how we could test this functionality:

5Revision 0.17, April 2024 The build2 Testscript Language

1 Introduction

$* - <<EOI >>EOO : stdin-names
Jane
John
EOI
Hello, Jane!
Hello, John!
EOO

As you might suspect, we can also use here-strings to supply stdin, for example:

$* - <’World’ >’Hello, World!’ : stdin-name

Let’s say our hello program has a configuration file that captures custom name-to-greeting

mappings. A path to this file can be passed with the -c option. To test this functionality we

first need to create a sample configuration file. This calls for a multi-command or compound

test, for example:

cat <<EOI >=hello.conf;
John = Howdy
Jane = Good day
EOI
$* -c hello.conf ’Jane’ >’Good day, Jane!’ : config-greet

Notice the semicolon (;) at the end of the first command: it indicates that the following

command is part of the same test.

Other than that, you may be wondering what exactly is cat? While most POSIX systems will

have a program with this name, there is no such thing, say, on vanilla Windows. To help with

portability Testscript provides a subset (both in terms of the number and supported features)

of POSIX utilities, such as, echo, touch, cat, mkdir, rm, and so on (see Builtins for

details).

You may also be wondering why we don’t have a third command, such as rm, that removes

hello.conf? It is not necessary because this file will be automatically registered for

cleanup that happens at the end of the test. We can also register our own files and directories

for automatic cleanup. For example, if the hello program created the hello.log file on

unsuccessful runs, then this is how we could have cleaned it up:

$* ... &hello.log != 0

What if we wanted to run two tests for this configuration file functionality? For example, we

may want to test the custom greeting as above but also make sure the default greeting is not

affected. One way to do this would be to repeat the cat command in each test. But there is a

better way: in Testscript we can combine related tests into groups. For example:

Revision 0.17, April 20246 The build2 Testscript Language

1 Introduction

: config
{
 conf = $~/hello.conf

 +cat <<EOI >=$conf
 John = Howdy
 Jane = Good day
 EOI

 $* -c $conf ’John’ >’Howdy, John!’ : custom-greet
 $* -c $conf ’Jack’ >’Hello, Jack!’ : default-greet
}

A test group is a scope that contains several tests. Variables set inside a scope (like our conf)

are only in effect until the end of this scope. Groups can also perform common, non-test

actions with setup and teardown commands. The setup commands start with the plus sign (+)

and must come before the tests while teardown – with minus (-) and must come after the

tests.

Note that setup and teardown commands are not part of any test (notice the lack of ; after

+cat), rather they are associated with the group itself. Their automatic cleanup only happens

at the end of the scope (so our hello.conf will only be removed after all the tests in the

group have completed).

A scope can also have a description. In particular, assigning a test group an id (config in

our example) allows us to run tests only from this specific group.

The last thing we need to discuss in this example is $~. This variable stands for the scope

working directory (we will talk more about working directories at the end of this introduc

tion).

Besides explicit group scopes, each test is automatically placed in its own implicit test scope.

However, we can make the test scope explicit, for example, for better visual separation of

complex tests:

: config-greet
{
 conf = hello.conf

 cat <’Jane = Good day’ >=$conf;
 $* -c $conf ’Jane’ >’Good day, Jane!’
}

We can conditionally exclude sections of a testscript using the if-else branching. This can

be done both at the scope level to exclude test or group scopes as well as at the command

level to exclude individual commands or variable assignments. Let’s start with a scope

example by providing a Windows-specific implementation of a test:

7Revision 0.17, April 2024 The build2 Testscript Language

1 Introduction

: config-empty
:
if ($cxx.target.class != windows)
{
 $* -c /dev/null ’Jane’ >’Hello, Jane!’
}
else
{
 $* -c nul ’Jane’ >’Hello, Jane!’
}

Note that the scopes in the if-else chain are treated as variants of the same test or group

thus the single description at the beginning.

Let’s now see an example of command-level if-else by reimplementing the above as a

single test with some branching and without using the nul device on Windows (notice the

semicolon after end):

: config-empty
:
if ($cxx.target.class != windows)
 conf = /dev/null
else
 conf = empty
 touch $conf
end;
$* -c $conf ’Jane’ >’Hello, Jane!’

You may have noticed that in the above examples we referenced the cxx.target.class

variable as if we were in a buildfile. We could do that because the testscript variable lookup

continues in the buildfile starting from the target being tested, then the testscript target, and

continuing with the standard scope lookup (see Model and Execution for details). In particu

lar, this means we can pass arbitrary information to testscripts using target-specific variables.

For example, this is how we can move the above platform test to buildfile:

buildfile

exe{hello}: cxx{hello} testscript

testscript{*}: windows = ($cxx.target.class == windows)

testscript

if! $windows
 conf = /dev/null
else
 ...

Note also that in cases where you simply need to conditionally pick a value for a variable, the

build2 evaluation context will often be a more concise option. For example:

: config-empty
:
conf = ($windows ? nul : /dev/null);
$* -c $conf ’Jane’ >’Hello, Jane!’

Revision 0.17, April 20248 The build2 Testscript Language

1 Introduction

Similar to Bash, test commands can be chained with pipes (|) and combined with logical

operators (|| and &&). Let’s say our hello program provided the -o option to write the

result to a file instead of stdout. Here is how we could test it:

$* -o hello.out - <<EOI &hello.out && cat hello.out >>EOO
John
Jane
EOI
Hello, John!
Hello, Jane!
EOO

Similarly, if it had the -r option to reverse the greetings back to their names (as every hello
program should), then we could write a test like this:

$* - <<EOI | $* -r - >>EOO
John
Jane
EOI
John
Jane
EOO

To conclude, let’s put all our (sensible) tests together so that we can have a complete picture:

$* ’World’ >’Hello, World!’ : command-name

$* ’John’ ’Jane’ >>EOO : command-names
Hello, Jane!
Hello, John!
EOO

$* - <<EOI >>EOO : stdin-names
Jane
John
EOI
Hello, Jane!
Hello, John!
EOO

: config
{
 conf = $~/hello.conf

 +cat <<EOI >=$conf
 John = Howdy
 Jane = Good day
 EOI

 $* -c $conf ’John’ >’Howdy, John!’ : custom-greet
 $* -c $conf ’Jack’ >’Hello, Jack!’ : default-greet
}

$* 2>>"EOE" != 0 : missing-name
error: missing name
usage: $0 <name>
EOE

9Revision 0.17, April 2024 The build2 Testscript Language

1 Introduction

Testscript isolates tests from each other by running each test in its own temporary working

directory under out_base. For the above testscript the working directory structure

will be as follows:

$out_base/
·-- test-hello/
 |-- command-name/
 |-- command-names/
 |-- stdin-names/
 |-- config/
 | |-- hello.conf
 | |-- custom-greet/
 | ·-- default-greet/
 ·-- missing-name/

If all the tests succeed, then this working directory structure is automatically removed. In case

of a failure, however, it is left behind in case you need to examine the output of the failed

tests. It will be automatically cleaned on the subsequent run, before executing any tests.

The execution of tests happens in parallel. In the above case Testscript can start running all

the top-level tests as well as the config group immediately. Inside config, once the setup

command (cat) is completed, the two inner tests are executed in parallel as well. Refer to

Model and Execution for details on the working directory structure and test execution.

2 Build System Integration

The integration of testscripts into buildfiles is done using the standard build2 target-prereq

uisite mechanism. In this sense, a testscript is a prerequisite that describes how to test the

target similar to how, for example, the INSTALL file describes how to install it. For example:

exe{hello}: testscript doc{INSTALL README}

By convention, the testscript file should be called either testscript if you only have one

or have the .testscript extension, for example, basics.testscript. The test
module registers the testscript{} target type to be used for testscript files. We don’t

have to use explicit target type for the testscript file. For example:

exe{hello}: testscript{basics advanced}

A testscript prerequisite can be specified for any target. For example, if our directory contains

a bunch of executables that we want to test together, then it makes sense to specify the

testscript prerequisite for the directory target:

./: testscript

Similarly, the same testscript can be used to test multiple targets. For example:

exe{hello}: testscript{basics advanced}
exe{hello-lite}: testscript{basics}

Revision 0.17, April 202410 The build2 Testscript Language

2 Build System Integration

During variable lookup if a variable is not found in one of the testscript scopes (see Model

and Execution), then the search continues in the buildfile starting with the target-specific

variables of the target being tested (e.g., exe{hello}; called test target), then

target-specific variables of the testscript target (e.g., testscript{basics}; called script

target), and then continuing with the scopes starting with the one containing the script target.

As a result, a testscript can "see" all the existing buildfile variables plus we can use

target-specific variables to pass additional, test-specific, information to testscrips. As an

example, consider this testscript and buildfile pair:

basics.testscript

if ($cxx.target.class == windows)
 test.arguments += $foo
end

if $windows
 test.arguments += $bar
end

buildfile

exe{hello}: testscript{basics}

All testscripts in this scope.
#
testscript{*}: windows = ($cxx.target.class == windows)

All testscripts for target exe{hello}.
#
exe{hello}: bar = BAR

Only basics.testscript.
#
testscript{basics}@./: foo = FOO

Additionally, by convention, a number of pre-defined test.* variables are used to pass

commonly required information to testscripts, as described next.

Unless set manually as a test or script target-specific variable, the test variable is automati

cally set to the target path being tested. For example, given this buildfile:

exe{hello}: testscript

The value of test inside the testscript will be the absolute path to the hello executable.

If the test variable is set manually to a name of a target, then it is automatically converted to

the target path. This can be useful when testing a program that is built in another subdirectory

of a project (or even in another project, via import). For example, our hello may reside in

the hello/ subdirectory while we may want to keep the tests in tests/:

11Revision 0.17, April 2024 The build2 Testscript Language

2 Build System Integration

hello/
|-- hello/
| ·-- hello*
·-- tests/
 |-- buildfile
 ·-- testscript

This is how we can implement tests/buildfile for this setup:

hello = ../hello/exe{hello}

./: $hello testscript

./: test = $hello

include ../hello/

The rest of the special test.* variables are test.options, test.arguments,

test.redirects, and test.cleanups. You can use them to pass additional command

line options, arguments, redirects, and cleanups to your test scripts. Together with test these

variables form the test target command line which, for conciseness, is bound to the following

aliases:

$* - $test $test.options $test.arguments $test.redirects $test.cleanups
$0 - $test
$N - (N-1)-th element in the {$test.options $test.arguments} array

Note that these aliases are read-only; if you need to modify any of these values from within

testscripts, then you should use the original variable names, for example:

test.options += --foo

$* bar # Includes --foo.

Note also that these test.* variables only establish a convention. You could also put every

thing into, say test.arguments, and it will still work as expected.

The test.redirects, test.cleanups, and $* variables are of the special cmdline
type, see Lexical Structure for details.

The special test.* variables make it fairly easy to arrange the testing of a single executable.

What if we need to run multiple executables from a single testscript file? For example, we

may have a pair of executables, such as reader and writer, that must be tested together.

Or we may have a number of test executables that all require a common setup, for example,

cryptographic key generation, which we would like not to repeating for each test. While it is

possible to achieve this with target-specific variables similar to test, things will be less

automatic. In particular, there will be no automatic translation of target names to paths and we

will have to do it manually. For example:

Revision 0.17, April 202412 The build2 Testscript Language

2 Build System Integration

buildfile

./: exe{reader}: cxx{reader} ...

./: exe{writer}: cxx{writer} ...

./: testscript
{
 reader = exe{reader}
 writer = exe{writer}
}

testscript

Translate targets to paths.
#
reader = $path($reader)
writer = $path($writer)

: pipe
:
$writer | $reader

: file
:
$writer output;
$reader output

Strictly speaking, for local executables, there is no need to pass the target names from

buildfile to testscript and instead we could just list them literally in testscript.

In particular, this could be an attractive approach if we have a large number of such executa

bles. For example:

testscript

$path(exe{test1}) : test1
$path(exe{test2}) : test2
$path(exe{test3}) : test3
...

Another pre-defined variable is test.target. It is used to specify the test target platform

when cross-testing (for example, when running Windows test on Linux under Wine).

Normally, you would set it in your build/root.build to the cross-compilation target of

your toolchain, for example:

root.build
#

using cxx # Load the C++ module (sets sets cxx.target).
test.target = $cxx.target # Set test target to the C++ compiler target.

If this variable is not set explicitly, then it defaults to build.host (which is the platform on

which the build system is running) and only native testing will be supported.

All the testscripts for a particular test target are executed in a subdirectory of out_base (or,

more precisely, in subdirectories of this subdirectory; see Model and Execution). If the test

target is a directory, then the subdirectory is called test. Otherwise, it is the name of the

13Revision 0.17, April 2024 The build2 Testscript Language

2 Build System Integration

target prefixed withtest-. For example:

./: testscript{foo} # $out_base/test/
exe{hello}: testscript{bar} # $out_base/test-hello/

3 Model and Execution

A testscript file is a set of nested scopes. A scope is either a group scope or a test scope.

Group scopes can contain nested group and test scopes. Test scopes can only contain test

commands.

Group scopes are used to organize related tests with shared variables as well as setup and tear

down commands. Explicit test scopes are normally used for better visual separation of

complex tests.

The top level scope is always an implicit group scope corresponding to the entire script file. If

there is no explicit scope for a test, one is established implicitly. As a result, a testscript file

always starts with a group scope which then contains other group scopes and/or test scopes,

recursively.

A scope (both group and test) has an id. If not specified explicitly (as part of the description),

it is derived automatically from the group/test location in the testscript file (see Description

for details). The id of the implicit outermost scope is the script file name without the

.testscript extension, except if the file name is testscript, in which case the id is

empty.

Based on the ids each nested group and test has an id path that uniquely identifies it. It starts

with the id of the implied outermost group (unless empty), may include a number of interme

diate group ids, and ends with the final test or group id. The ids in the path are separated with

a forward slash (/). Note that this also happens to be the relative filesystem path to the tempo

rary directory where the test is executed (as described below). Inside a scope its id path is

available via the special $@ variable (read-only).

As an example, consider the following testscript file which we assume is called

basics.testscript:

test0: test0

: group
{
 test1

 : test2
 {
 test2a;
 test2b
 }
}

Revision 0.17, April 202414 The build2 Testscript Language

3 Model and Execution

Below is its version annotated with the id paths that also shows all the implicit scopes:

basics
{
 # basics/test0
 {
 test0
 }

 # basics/group
 {
 # basics/group/5
 {
 test1
 }

 # basics/group/test2
 {
 test2a;
 test2b
 }
 }
}

A scope establishes a nested variable context. A variable set within a scope will only have

effect until the end of this scope. Variable lookup is performed starting from the scope where

the variable is referenced (expanded), continuing with the outer testscript scopes, and then

continuing in the buildfile as described in Build System Integration.

A scope also establishes a cleanup context. All cleanups (Cleanup) registered in a scope are

performed at the end of that scope’s execution in the reverse order of their registration.

Prior to executing a scope, a nested temporary directory is created with the scope id as its

name. This directory then becomes the scope’s working directory. After executing the scope

(and after performing cleanups) this temporary directory is automatically removed provided

that it is empty. If it is not empty, then the test is considered to have failed (unexpected

output). Inside a scope its working directory is available via the special $~ variable

(read-only).

As an example, consider the following version of basics.testscript. We also assume

that its test target is a directory (so the target test directory is $out_base/test/).

: group
{
 foo = FOO
 bar = BAR

 +setup &out-setup

 : test1
 {
 bar = BAZ
 test1 $foo $bar
 }

15Revision 0.17, April 2024 The build2 Testscript Language

3 Model and Execution

 test2 $bar: test2
}

test3 $foo &out-test

Below is its annotated version:

{ # $~ = $out_base/test/basics/
 { # $~ = .../test/basics/group/
 foo = FOO
 bar = BAR

 +setup &out-setup

 { # $~ = .../basics/group/test1/
 bar = BAZ
 test1 $foo $bar # test1 FOO BAZ
 }

 { # $~ = .../basics/group/test2/
 test2 $bar # test2 BAR
 }
 } # Remove out-setup.

 { # $~ = .../test/basics/17/
 test3 $foo &out-test # test3
 } # Remove out-test.
}

A test should normally create files or directories, if any, in its working directory to ensure test

isolation. A test can, however, access (but normally should not modify) files created by an

outer group’s setup commands. Because of this nested directory structure this can be done

using ../-based relative paths, for example:

{
 +setup >=test.conf

 test1 ../test.conf
 test2 ../test.conf
}

Alternatively, we can use an absolute path:

{
 conf = $~/test.conf
 +setup >=$conf

 test1 $conf
 test2 $conf
}

Inside the scope working directory filesystem names that start with stdin, stdout, and

stderr are reserved.

To execute a test scope its commands (including variable assignments) are executed sequen

tially and in the order specified. If any of the commands fails, no further commands are

executed and the test is considered to have failed.

Revision 0.17, April 202416 The build2 Testscript Language

3 Model and Execution

Executing a group scope starts with performing its setup commands (including variable

assignments) sequentially and in the order specified. If any of them fail, the group execution

is terminated and the group is considered to have failed.

After completing the setup, inner scopes (both group and test) are executed. Because scopes

are isolated and tests are assumed not to depend on each other, the execution of inner scopes

can be performed in parallel.

After completing the execution of the inner scopes, if all of them succeeded, the teardown

commands are executed sequentially and in the order specified. Again, if any of them fail, the

group execution is terminated and the group is considered to have failed.

Currently, the only way to run several executables serially is to place them into a single

compound test. See Test for details.

As an example, consider the following version of basics.testscript:

test0

: group
{
 +setup1
 +setup2

 test1
 test2
 test3

 -teardown2
 -teardown1
}

At the top level, both test0 and group can start executing in parallel. Inside group, first

the two setup commands are executed sequentially. Once the setup is completed, test1,

test2, test3 can all be executed in parallel (along with test0 which may still be

running). Once the three inner tests complete successfully, the group’s teardown commands

are executed sequentially. At the top level, the script is completed only when both test0 and

group complete.

The following annotated version illustrates a possible thread scheduling for this example:

{ # thread 1

 test0 # thread 2

 : group # thread 1
 {
 +setup1 # thread 1
 +setup2 # thread 1

 test1 # thread 3
 test2 # thread 4
 test3 # thread 1

 # thread 1 (wait for 3 & 4)

17Revision 0.17, April 2024 The build2 Testscript Language

3 Model and Execution

 -teardown2 # thread 1
 -teardown1 # thread 1
 }
 # thread 1 (wait for 2)
}

A testscript would normally contain multiple tests and sometimes it is desirable to only

execute a specific test or a group of tests. For example, you may be debugging a failing test

and would like to re-run it. As an example, consider the following testscript file called

basics.testscript:

$* foo : foo

: fox
{
 $* fox bar : bar
 $* fox baz : baz
}

The id paths for these three test will then be:

basics/foo
basics/fox/bar
basics/fox/baz

To only run individual tests, test groups, or testscript files we can specify their id paths in the

config.test variable, for example:

$ b test config.test=basics # All in basics.testscript
$ b test config.test=basics/fox # All in fox
$ b test config.test=basics/foo # Only foo
$ b test config.test="basics/foo basics/fox/bar" # Only foo and bar

The test commands ($0, $*) can be executed via a runner program by specifying the

config.test.runner variable (see test module for details). For example:

$ b test config.test.runner="valgrind -q"

The script working directory may exist before the execution (for example, because of a failed

previous run) or it may be desirable not to clean it up after the execution (for example, to

examine test setup, output, etc). Before the execution the default behavior is to warn and then

automatically remove the working directory if it exists. After the execution the default behav

ior is to perform all the cleanups and teardowns and then remove the working directory if it is

not empty. This default behavior can, however, be overridden with the

config.test.output variable.

The config.test.output variable contains a pair of values with the first signifying the

before behavior and the second – after. The valid before values are fail (fail if the directory

exists), warn (warn if the directory exists then remove), clean (silently remove the existing

directory). The valid after values are clean (remove the directory if it is not empty) and

keep (do not run cleanups and teardowns and do not remove the working directory). The

default behavior is thus equivalent to specifying the warn@clean pair.

Revision 0.17, April 202418 The build2 Testscript Language

3 Model and Execution

If only a single value is specified in config.test.output then it is assumed to be the

after value and the before value is assumed to be clean. In other words:

$ b test config.test.output=clean # config.test.output=clean@clean
$ b test config.test.output=keep # config.test.output=clean@keep

Note also that selecting the keep behavior may result in some test failures (due to unexpected

output) to go undetected.

4 Lexical Structure

At the lexical level, testscripts are UTF-8 encoded text restricted to the Unicode graphic char

acters, tabs (\t), carriage returns (\r), and line feeds (\n).

Testscript is a line-oriented language with a context-dependent lexical structure. It "borrows"

several building blocks (variable expansion, function calls, and evaluation contexts; collec

tively called expansions from now on) from the Buildfile language. In a sense, testscripts are

specialized (for testing) continuations of buildfiles.

Except in here-document fragments, leading whitespaces and blank lines are ignored except

for the line/column counting. A non-empty testscript must end with a newline.

Except in single-quoted strings and single-quoted here-document fragments, the backslash (\)

character followed by a newline signals the line continuation. Both this character and the

newline are removed (note: not replaced with a whitespace) and the following line is read as if

it was part of the first line. Note that ’\’ followed by EOF is invalid. For example:

$* foo | \
$* bar

Except in quoted strings and here-document fragments, an unquoted and unescaped ’#’ char

acter starts a comment; everything from this character until the end of the line is ignored. For

example:

Setup foo.
$* foo

$* bar # Setup bar.

There is no line continuation support in comments; the trailing ’\’ is ignored except in one

case: if the comment is just ’#\’ followed by the newline, then it starts a multi-line comment

that spans until the closing ’#\’ is encountered. For example:

#\
$* foo
$* bar
#\

$* foo #\
$* bar
$* baz #\

19Revision 0.17, April 2024 The build2 Testscript Language

4 Lexical Structure

Similar to Buildfile, the Testscript language supports two types of quoting: single (’) and

double ("). Both can span multiple lines.

The single-quoted strings and single-quoted here-document fragments do not recognize any

expansions or escape sequences (not even for the single quote itself or line continuations) with

all the characters taken literally until the closing single quote or here-document end marker is

encountered.

The double-quoted strings and double-quoted here-document fragments recognize expansions

and escape sequences (including line continuations). For example:

foo = FOO

’FOO true’
#
bar = "$foo ($foo == FOO)"

’FOO bool’
#
$* <<"EOI"
$foo $type($foo == FOO)
EOI

Characters that have special syntactic meaning (for example ’$’) can be escaped with a

backslash (\) to preserve their literal meaning (to specify literal backslash you need to escape

it as well). For example:

foo = \$foo\\bar # ’$foo\bar’

Note that quoting could often be a more readable way to achieve the same result, for example:

foo = ’$foo\bar’

Inside double-quoted strings only the "\$(character set needs to be escaped. Inside

double-quoted here-document fragments – only \$((since in here-documents quotes are

taken literally).

The lexical structure of a line depends on its type. The line type could be dictated by the

preceding construct, as is the case for here-document fragments. Otherwise, the line type is

determined by examining the leading character and, if that fails to determine the line type,

leading tokens, as described next.

A character is said to be unquoted and unescaped if it is not escaped and is not part of a

quoted string. A token is said to be unquoted and unescaped if all its characters are unquoted

and unescaped.

The following characters determine the line type if they appear unquoted and unescaped at the

beginning of the line:

Revision 0.17, April 202420 The build2 Testscript Language

4 Lexical Structure

’:’ - description line
’.’ - directive line
’{’ - scope start
’}’ - scope end
’+’ - setup command line
’-’ - teardown command line

If the line doesn’t start with any of these characters then the first token of the line is examined

in the first_token mode (see below). If the first token is an unquoted word, then the

second token of the line is examined in the second_token mode (see below). If it is a vari

able assignment (either +=, =+, or =), then the line type is a variable line. Otherwise, it is a

test command line. Note that variables with computed names can only be set using the set

pseudo-builtin.

The Testscript language defines the following distinct lexing modes (or contexts):

command_line

Whitespaces are token separators. The following characters and character sequences

(read vertically, for example, ==, != below) are recognized as tokens:

:;=!|&<>$(#
 ==

first_token

Like command_line but recognizes variable assignments as separators.

second_token

Like command_line but recognizes variable assignments as tokens.

command_expansion

Subset of command_line used for re-lexing expansions (described below). Only the

|&<> characters are recognized as tokens. Note that whitespaces are not separators in

this mode.

variable_line

Similar to the Buildfile value mode. The ;$([] characters are recognized as tokens.

description_line

Like a single-quoted string.

here_line_single

Like a single-quoted string except it treats newlines as separators and quotes as literals.

here_line_double

Like a double-quoted string except it treats newlines as separators and quotes as literals.

The $(characters are recognized as tokens.

Besides having a varying lexical structure, parsing some line types involves performing

expansions (variable expansions, function calls, and evaluation contexts). The following table

summarizes the mapping of line types to lexing modes and indicates whether they are parsed

with expansions:

21Revision 0.17, April 2024 The build2 Testscript Language

4 Lexical Structure

variable line variable_line expansions
directive line command_line expansions
description line description_line

test command line command_line expansions
setup command line command_line expansions
teardown command line command_line expansions

here-document single-quoted here_line_single
here-document double-quoted here_line_double expansions

Finally, unquoted expansions in command lines (test, setup, and teardown) of the special

cmdline type are re-lexed in the command_expansion mode in order to recognize

command line syntax tokens (redirects, pipes, etc). To illustrate this mechanism, consider the

following example of a "canned" command line:

cmd = [cmdline] echo >-
$cmd foo

The test command line token sequence will be $, cmd, foo. After the expansion we have

echo, >-, foo, however, the second element (>-) is not (yet) recognized as a redirect. To

recognize it, the result of the expansion is re-lexed.

Note that besides the few command line syntax characters, re-lexing will also "consume"

quotes and escapes, for example:

cmd = [cmdline] echo "’foo’" # echo ’foo’
$cmd # echo foo

To preserve quotes in this context we need to escape them:

cmd = [cmdline] echo "\\’foo\\’" # echo \’foo\’
$cmd # echo ’foo’

To minimize unhelpful consumption of escape sequences (for example, in Windows paths),

re-lexing only performs the effective escaping for the ’"\ characters. All other escape

sequences are passed through uninterpreted. Note that this means there is no way to escape

command line syntax characters in canned commands. The recommendation is to use quoting

except for passing literal quotes, for example:

cmd = [cmdline] echo \’&foo\’ # echo ’&foo’
$cmd # echo &foo

To make sure that a string is passed as is through both expansions use the doubled

single-quoting idiom, for example:

filter = [cmdline] sed -e \’’s/foo (bar|baz)/$&/’\’
$* <<EOI | $filter >>EOO
...
EOI
...
EOO

Revision 0.17, April 202422 The build2 Testscript Language

4 Lexical Structure

5 Syntax and Semantics

5.1 Notation

The formal grammar of the Testscript language is specified using an EBNF-like notation with

the following elements:

foo: ... - production rule
foo - non-terminal
<foo> - terminal
’foo’ - literal
foo* - zero or more multiplier
foo+ - one or more multiplier
foo? - zero or one multiplier
foo bar - concatenation (foo then bar)
foo | bar - alternation (foo or bar)
(foo bar) - grouping
{foo bar} - grouping in any order (foo then bar or bar then foo)
foo\
bar - line continuation
foo - comment

A rule’s right-hand-sides that start on a new line describe the line-level syntax and ones that

start on the same line describes the syntax inside the line. If a rule contains multiple lines,

then each line matches a separate line in the input.

If a multiplier appears in front of a line then it specifies the number of repetitions of the entire

line. For example, from the following three rules, the first describes a single line of multiple

literals, the second – multiple lines of a single literal, and the third – multiple lines of multiple

literals.

foofoofoo
#
text-line: ’foo’+

foo
foo
foo
#
text-lines:
 +’foo’

foo
foofoo
foofoofoo
#
text-lines:
 +(’foo’+)

A newline in the grammar matches any standard newline separator sequence (CR/LF combi

nations). An unquoted space in the grammar matches zero or more non-newline whitespaces

(spaces and tabs). A quoted space matches exactly one non-newline whitespace. Note also

that in some cases components within lines may not be whitespace-separated in which case

they will be written without any spaces between them, for example:

23Revision 0.17, April 2024 The build2 Testscript Language

5 Syntax and Semantics

foo: ’foo’ ’;’ # ’foo;’ or ’foo ;’ or ’foo ;’
bar: ’bar’’;’ # ’bar;’
baz: ’baz’’ ’+’;’ # ’baz ;’ or ’baz ;’

fox: bar’’bar # ’bar;bar;’

You may also notice that several production rules below end with -line while potentially

spanning several physical lines. The -line suffix here signifies a logical line, for example, a

command line plus its here-document fragments.

5.2 Grammar

The complete grammar of the Testscript language is presented next with the following

sections discussing the semantics of each production rule.

script:
 scope-body

scope-body:
 *setup
 *(scope|directive|test)
 *tdown

scope:
 ?description
 scope-block|scope-if

scope-block:
 ’{’
 scope-body
 ’}’

scope-if:
 (’if’|’if!’) command-line
 scope-block
 *scope-elif
 ?scope-else

scope-elif:
 (’elif’|’elif!’) command-line
 scope-block

scope-else:
 ’else’
 scope-block

directive:
 ’.’ include

include: ’include’ (’ ’+’--once’)*(’ ’+<path>)*

setup:
 variable-like|setup-line

tdown:
 variable-like|tdown-line

setup-line: ’+’ command-like
tdown-line: ’-’ command-like

Revision 0.17, April 202424 The build2 Testscript Language

5.2 Grammar

test:
 ?description
 +(variable-line|command-like)

variable-like:
 variable-line|variable-flow

variable-line:
 <variable-name> (’=’|’+=’|’=+’) value-attributes? <value> ’;’?

value-attributes: ’[’ <key-value-pairs> ’]’

variable-flow:
 variable-if|variable-for|variable-while

variable-if:
 (’if’|’if!’) command-line
 variable-flow-body
 *variable-elif
 ?variable-else
 ’end’ ’;’?

variable-elif:
 (’elif’|’elif!’) command-line
 variable-flow-body

variable-else:
 ’else’
 variable-flow-body

variable-flow-body:
 *variable-like

variable-for:
 variable-for-args|variable-for-stream

variable-for-args:
 ’for’ <variable-name> element-attributes? ’:’ \
 value-attributes? <value>
 variable-flow-body
 ’end’ ’;’?

element-attributes: value-attributes

variable-for-stream:
 (command-pipe ’|’)? \
 ’for’ (<opt>|stdin)* <variable-name> element-attributes? (stdin)*
 variable-flow-body
 ’end’ ’;’?

variable-while:
 ’while’ command-line
 variable-flow-body
 ’end’ ’;’?

command-like:
 command-line|command-flow

command-line: command-expr (’;’|(’:’ <text>))?
 *here-document

25Revision 0.17, April 2024 The build2 Testscript Language

5.2 Grammar

command-expr: command-pipe ((’||’|’&&’) command-pipe)*

command-pipe: command (’|’ command)*

command: <path>(’ ’+(<arg>|redirect|cleanup))* command-exit?

command-exit: (’==’|’!=’) <exit-status>

command-flow:
 command-if|command-for|command-while

command-if:
 (’if’|’if!’) command-line
 command-flow-body
 *command-elif
 ?command-else
 ’end’ (’;’|(’:’ <text>))?

command-elif:
 (’elif’|’elif!’) command-line
 command-flow-body

command-else:
 ’else’
 command-flow-body

command-flow-body:
 *(variable-line|command-like)

command-for:
 command-for-args|command-for-stream

command-for-args:
 ’for’ <variable-name> element-attributes? ’:’ \
 value-attributes? <value>
 command-flow-body
 ’end’ (’;’|(’:’ <text>))?

command-for-stream:
 (command-pipe ’|’)? \
 ’for’ (<opt>|stdin)* <variable-name> element-attributes? (stdin)*
 command-flow-body
 ’end’ (’;’|(’:’ <text>))?

command-while:
 ’while’ command-line
 command-flow-body
 ’end’ (’;’|(’:’ <text>))?

redirect: stdin|stdout|stderr

stdin: ’0’?(in-redirect)
stdout: ’1’?(out-redirect)
stderr: ’2’(out-redirect)

in-redirect: ’<-’|\
 ’<|’|\
 (’<<<’|’<=’) <file>|\
 (’<<’|’<<=’){’:’?’/’?} <here-end>|\
 (’<’|’<<<=’){’:’?’/’?} <text>

out-redirect: ’>-’|\

Revision 0.17, April 202426 The build2 Testscript Language

5.2 Grammar

 ’>|’|\
 ’>!’|\
 ’>=’ <file>|\
 ’>+’ <file>|\
 ’>&’ (’1’|’2’)|\
 (’>>>’|’>?’) <file>|\
 (’>>’|’>>?’){’:’?’/’?}’~’? <here-end>|\
 (’>’|’>>>?’){’:’?’/’?}’~’? <text>

here-document:
 *<text>
 <here-end>

cleanup: (’&’|’&?’|’&!’) (<file>|<dir>)

description:
 +(’:’ <text>)

Note that the only purpose of having separate (from the command flow control constructs)

variable-only flow control constructs is to remove the error-prone requirement of having to

specify + and - prefixes in group setup/teardown.

5.3 Script

script:
 scope-body

A testscript file is an implicit group scope (see Model and Execution for details).

5.4 Scope

scope-body:
 *setup
 *(scope|directive|test)
 *tdown

scope:
 ?description
 scope-block|scope-if

scope-block:
 ’{’
 scope-body
 ’}’

A scope is either a test group scope or an explicit test scope. An explicit scope is a test scope

if it contains a single test, only variable assignments in setup commands, no teardown

commands, and only the scope having the description, if any. Otherwise, it is a group scope. If

there is no explicit scope for a test, one is established implicitly.

27Revision 0.17, April 2024 The build2 Testscript Language

5.3 Script

5.5 Scope-If

scope-if:
 (’if’|’if!’) command-line
 scope-block
 *scope-elif
 ?scope-else

scope-elif:
 (’elif’|’elif!’) command-line
 scope-block

scope-else:
 ’else’
 scope-block

A scope, either test or group, can be executed conditionally. The condition command-line
is executed in the context of the outer scope. Note that all the scopes in an if-else chain

are alternative implementations of the same group/test (thus the single description). If at least

one of them is a group scope, then all the others are treated as groups as well.

5.6 Directive

directive:
 ’.’ include

A line that starts with . is a Testscript directive. Note that directives are evaluated during

parsing, before any command is executed or (testscript) variable is assigned. You can,

however, use variables assigned in the buildfile. For example:

.include common-$(cxx.target.class).testscript

5.6.1 Include

include: ’include’ (’ ’+’--once’)*(’ ’+<path>)*

While in the grammar the include directive is shown to only appear interleaving with

scopes and tests, it can be used anywhere in the scope body. It can also contain several parts

of a scope, for example, setup and test lines.

The --once option signals that files that have already been included in this scope should not

be included again. The implementation is not required to handle links when determining if

two paths are to the same file. Relative paths are assumed to be relative to the including

testscript file.

5.7 Setup and Teardown

setup:
 variable-like|setup-line

tdown:

Revision 0.17, April 202428 The build2 Testscript Language

5.5 Scope-If

 variable-like|tdown-line

setup-line: ’+’ command-like
tdown-line: ’-’ command-like

Note that variable assignments (including variable-flow) do not use the ’+’ and ’-’
prefixes. A standalone (not part of a test) variable assignment is automatically treated as a

setup if no tests have yet been encountered in this scope and as a teardown otherwise.

5.8 Test

test:
 ?description
 +(variable-line|command-like)

A test that contains multiple lines is called compound. In this case each (logical) line except

the last must end with a semicolon to signal the test continuation. For example:

conf = test.conf;
cat <’verbose = true’ >=$conf;
test1 $conf

As discussed in Model and Execution, tests are executed in parallel. Currently, the only way

to run several executables serially is to place them into a single compound test.

5.9 Variable

variable-like:
 variable-line|variable-flow

variable-line:
 <variable-name> (’=’|’+=’|’=+’) value-attributes? <value> ’;’?

value-attributes: ’[’ <key-value-pairs> ’]’

The Testscript variable assignment semantics is equivalent to Buildfile except that no

{}-based name-generation is performed. For example:

args = [strings] foo bar ’fox baz’
echo $args # foo bar fox baz

The value can only be followed by ; inside a test to signal the test continuation.

5.10 Variable-If

variable-if:
 (’if’|’if!’) command-line
 variable-flow-body
 *variable-elif
 ?variable-else
 ’end’ ’;’?

variable-elif:
 (’elif’|’elif!’) command-line
 variable-flow-body

29Revision 0.17, April 2024 The build2 Testscript Language

5.8 Test

variable-else:
 ’else’
 variable-flow-body

variable-flow-body:
 *variable-like

A group of variables can be set conditionally. The condition command-line semantics is

the same as in scope-if. For example:

if ($cxx.target.class == ’windows’)
 slash = \\
 case = false
else
 slash = /
 case = true
end

When conditionally setting a single variable, using the evaluation context with a ternary oper

ator is often more concise:

slash = ($cxx.target.class == ’windows’ ? \\ : /)

5.11 Variable-For

variable-for:
 variable-for-args|variable-for-stream

variable-for-args:
 ’for’ <variable-name> element-attributes? ’:’ \
 value-attributes? <value>
 variable-flow-body
 ’end’ ’;’?

variable-for-stream:
 (command-pipe ’|’)? \
 ’for’ (<opt>|stdin)* <variable-name> element-attributes? (stdin)*
 variable-flow-body
 ’end’ ’;’?

variable-flow-body:
 *variable-like

A group of variables can be set in a loop while iterating over elements of a list. The iteration

semantics is the same as in command-for. For example:

uvalues =
for v: $values
 uvalues += $string.ucase($v)
end

Another example:

Revision 0.17, April 202430 The build2 Testscript Language

5.11 Variable-For

uvalues =
cat values.txt | for -n v
 uvalues += $string.ucase($v)
end

Or using the stdin redirect:

uvalues =
for -n v <=values.txt
 uvalues += $string.ucase($v)
end

5.12 Variable-While

variable-while:
 ’while’ command-line
 variable-flow-body
 ’end’ ’;’?

variable-flow-body:
 *variable-like

A group of variables can be set in a loop while the condition evaluates to true. The condi

tion command-line semantics is the same as in scope-if. For example:

uvalues =
i = [uint64] 0
n = $size($values)
while ($i != $n)
 uvalues += $string.ucase($values[$i])
 i += 1
end

5.13 Command

command-like:
 command-line|command-flow

command-line: command-expr (’;’|(’:’ <text>))?
 *here-document

command-expr: command-pipe ((’||’|’&&’) command-pipe)*

command-pipe: command (’|’ command)*

command: <path>(’ ’+(<arg>|redirect|cleanup))* command-exit?

command-exit: (’==’|’!=’) <exit-status>

A command line is a command expression. If it appears directly (as opposed to inside

command-flow) in a test, then it can be followed by ; to signal the test continuation or by

: and the trailing description.

A command expression can combine several command pipes with logical AND and OR oper

ators. Note that the evaluation order is always from left to right (left-associative), both opera

tors have the same precedence, and are short-circuiting. Note, however, that short-circuiting

31Revision 0.17, April 2024 The build2 Testscript Language

5.12 Variable-While

does not apply to expansions (variable, function calls, evaluation contexts). The logical result

of a command expression is the result of the last command pipe executed.

A command pipe can combine several commands with a pipe (stdout of the left-hand-side

command is connected to stdin of the right-hand-side). The logical result of a command

pipe is the logical AND of all its commands.

A command begins with a command path followed by options/arguments, redirects, and

cleanups, all optional and in any order.

A command may specify an exit code check. If executing a command results in an abnormal

process termination, then the whole outer construct (e.g., test, setup/teardown, etc) summarily

fails. Otherwise (that is, in case of a normal termination), the exit code is checked. If omitted,

then the test is expected to succeed (0 exit code). The logical result of executing a command is

therefore a boolean value which is used in the higher-level constructs (pipe and expression).

5.14 Command-If

command-if:
 (’if’|’if!’) command-line
 command-flow-body
 *command-elif
 ?command-else
 ’end’ (’;’|(’:’ <text>))?

command-elif:
 (’elif’|’elif!’) command-line
 command-flow-body

command-else:
 ’else’
 command-flow-body

command-flow-body:
 *(variable-line|command-like)

A group of commands can be executed conditionally. The condition command-line seman

tics is the same as in scope-if. Note that in a compound test, commands inside

command-if must not end with ;. Rather, ; may follow end. For example:

if ($cxx.target.class == ’windows’)
 foo = windows
 setup1
 setup2
else
 foo = posix
end;
test1 $foo

Revision 0.17, April 202432 The build2 Testscript Language

5.14 Command-If

5.15 Command-For

command-for:
 command-for-args|command-for-stream

command-for-args:
 ’for’ <variable-name> element-attributes? ’:’ \
 value-attributes? <value>
 command-flow-body
 ’end’ (’;’|(’:’ <text>))?

command-for-stream:
 (command-pipe ’|’)? \
 ’for’ (<opt>|stdin)* <variable-name> element-attributes? (stdin)*
 command-flow-body
 ’end’ (’;’|(’:’ <text>))?

command-flow-body:
 *(variable-line|command-like)

A group of commands can be executed in a loop while iterating over elements of a list and

setting the specified variable (called loop variable) to the corresponding element on each iter

ation. At the end of the iteration the loop variable contains the value of the last element, if

any. Note that in a compound test, commands inside command-for must not end with ;.

Rather, ; may follow end.

The for loop has two forms: In the first form the list is specified as arguments. Similar to the

for loop in the Buildfile language, it can contain variable expansions, function calls, evalua

tion contexts, and/or literal values. For example:

for v: $values
 test1 $v
end;
test2

In the second form the list is read from the stdin input. The input data is split into elements

either at whitespaces (default) or newlines, which can be controlled with the

-n|--newline and -w|--whitespace options. Overall, this form supports the same set

of options as the set pseudo-builtin. For example:

cat values.txt | for -n v
 test1 $v
end

Or using the stdin redirect:

for -n v <=values.txt
 test1 $v
end

Both forms can include value attributes enclosed in [] to be applied to each element, again

similar to the set pseudo-builtin.

33Revision 0.17, April 2024 The build2 Testscript Language

5.15 Command-For

5.16 Command-While

command-while:
 ’while’ command-line
 command-flow-body
 ’end’ (’;’|(’:’ <text>))?

command-flow-body:
 *(variable-line|command-like)

A group of commands can be executed in a loop while a condition evaluates to true. The

condition command-line semantics is the same as in scope-if. Note that in a compound

test, commands inside command-while must not end with ;. Rather, ; may follow end.

For example:

i = [uint64] 0;
n = $size($values);
while ($i != $n)
 test1 ($values[$i])
 i += 1
end;
test2

Another example:

while test -f $file
 test1 $file
end

5.17 Redirect

redirect: stdin|stdout|stderr

stdin: ’0’?(in-redirect)
stdout: ’1’?(out-redirect)
stderr: ’2’(out-redirect)

In redirects the file descriptors must not be separated from the redirect operators with whites

paces. And if leading text is not separated from the redirect operators, then it is expected to be

the file descriptor. As an example, the first command below has 2 as an argument (and there

fore redirects stdout, not stderr). While the second is invalid since a1 is not a valid file

descriptor.

$* 2 >-
$* a1>-

5.18 Input Redirect

in-redirect: ’<-’|\
 ’<|’|\
 (’<<<’|’<=’) <file>|\
 (’<<’|’<<=’){’:’?’/’?} <here-end>|\
 (’<’|’<<<=’){’:’?’/’?} <text>

Revision 0.17, April 202434 The build2 Testscript Language

5.16 Command-While

The stdin data can come from a pipe, here-string (<), here-document (<<), a file (<<<), or

/dev/null-equivalent (<-). Specifying both a pipe and a redirect is an error. If no pipe or

stdin redirect is specified and the test tries to read from stdin, it is considered to have

failed (unexpected input). However, whether this is detected and diagnosed is implementa

tion-defined. To allow reading from the default stdin (for instance, if the test is really an

example), the <| redirect is used.

The <=, <<=, and <<<= redirects are a stable syntax across various build2 scripting

language flavors (Testscript, Buildscript, etc). While the <, <<, and <<< redirects are their

Testscript aliases with the mapping chosen to be more convenient for this flavor of the script

ing language. This mapping is as follows:

< <<<= here-string
<< <<= here-document
<<< <= file

Here-string and here-document redirects may specify the following redirect modifiers:

The : modifier is used to suppress the otherwise automatically-added terminating newline.

The / modifier causes all the forward slashes in the here-string or here-document to be trans

lated to the directory separator of the test target platform (as indicated by test.target).

A here-document redirect must be specified literally on the command line. Specifically, it

must not be the result of an expansion (which rarely makes sense anyway since the following

here-document fragment itself cannot be the result of an expansion either). See Here Docu

ment for details.

5.19 Output Redirect

out-redirect: ’>-’|\
 ’>|’|\
 ’>!’|\
 ’>=’ <file>|\
 ’>+’ <file>|\
 ’>&’ (’1’|’2’)|\
 (’>>>’|’>?’) <file>|\
 (’>>’|’>>?’){’:’?’/’?}’~’? <here-end>|\
 (’>’|’>>>?’){’:’?’/’?}’~’? <text>

The stdout and stderr data can go to a pipe (stdout only), file (>= to overwrite and

>+ to append), or /dev/null-equivalent (>-). It can also be compared to a here-string (>),

a here-document (>>), or a file contents (>>>). For stdout specifying both a pipe and a

redirect is an error. A test that tries to write to an un-redirected stream (either stdout or

stderr) is considered to have failed (unexpected output). To allow writing to the default

stdout or stderr (for instance, if the test is really an example), the >| redirect is used.

The >?, >>?, and >>>? redirects are a stable syntax across various build2 scripting

language flavors (Testscript, Buildscript, etc). While the >, >>, and >>> redirects are their

Testscript aliases with the mapping chosen to be more convenient for this flavor of the script

ing language. This mapping is as follows:

35Revision 0.17, April 2024 The build2 Testscript Language

5.19 Output Redirect

> >>>? here-string comparison
>> >>? here-document comparison
>>> >? file contents comparison

The >! redirect acts like >- if the build system verbosity level is below 2 and as >| other

wise. It is normally used to ignore diagnostics (as opposed to data) during normal operation

but to still be able to examine it, for example, when debugging a failing test.

It is also possible to merge stderr to stdout or vice versa with a merge redirect (>&). In

this case the left-hand-side descriptor (implied or explicit) must not be the same as the

right-hand-side. Having both merge redirects at the same time is an error.

The : and / redirect modifiers have the same semantics as in the input redirects. The ~ modi

fier is used to indicate that the following here-string/here-document is a regular expression

(see Regex) rather than a literal. Note that if present, it must be specified last.

Similar to the input redirects, an output here-document redirect must be specified literally on

the command line. See Here Document for details.

5.20 Here-Document

here-document:
 *<text>
 <here-end>

A here-document can be used to supply data to stdin or to compare output to the expected

result for stdout and stderr. The order of here-document fragments must match the order

of redirects, for example:

: select-no-table-error
$* --interactive >>EOO <<EOI 2>>EOE
enter query:
EOO
SELECT * FROM no_such_table
EOI
error: no such table ’no_such_table’
EOE

Two or more here-document redirects can use the same end marker. In this case all the redi

rects must have the same modifiers, if any. Only the here-document fragment corresponding

to the first occurrence of the end marker must be present (called shared here-document) with

the subsequent redirects reusing the same data. This mechanism is primarily useful for

round-trip testing, for example:

: xml-round-trip
$* <<EOD >>EOD
<hello>Hello, World!</hello>
EOD

Here-strings can be single-quoted literals or double-quoted with expansion. This semantics is

extended to here-documents as follows: If the end marker on the command line is

single-quoted, then the here-document lines are parsed as if they were single-quoted except

Revision 0.17, April 202436 The build2 Testscript Language

5.20 Here-Document

that the single quote itself is not treated as special. In this mode there are no expansions,

escape sequences, not even line continuations – each line is taken literally.

If the end marker on the command line is double-quoted, then the here-document lines are

parsed as if they were double-quoted except that the double quote itself is not treated as

special. In this mode we can use variable expansions, function calls, and evaluation contexts.

However, we have to escape the $(\ character set.

If the end marker is not quoted then it is treated as if it were single-quoted. Note also that

quoted end markers must be quoted entirely, that is, from the beginning and until the end and

without any interruptions.

Here-document fragments can be indented. The leading whitespaces of the end marker line

(called strip prefix) determine the indentation. Every other line in the here-document should

start with this prefix which is then automatically stripped. The only exception is a blank line.

For example, the following two testscripts are equivalent:

{
 $* <<EOI
 foo
 bar
 EOI
}

{
 $* <<EOI
foo
 bar
EOI
}

Note, however, that the leading whitespace stripping does not apply to line continuations.

5.21 Output Regex

Instead of literal text the expected result in output here-strings and here-documents can be

specified as ECMAScript regular expressions (more specifically, ECMA-262-based C++11

regular expressions). To signal the use of regular expressions the redirect must end with the ~

modifier, for example:

$* >~’/fo+/’ 2>>~/EOE/
/ba+r/
baz
EOE

The regular expression used for output matching is two-level. At the outer level the expression

is over lines with each line treated as a single character. We will refer to this outer expression

as line-regex and to its characters as line-char.

37Revision 0.17, April 2024 The build2 Testscript Language

5.21 Output Regex

A line-char can be a literal line (like baz in the example above) in which case it will only be

equal to an identical line in the output. Alternatively, a line-char can be an inner level regex

(like ba+r above) in which case it will be equal to any line in the output that matches this

regex. Where not clear from context we will refer to this inner expression as char-regex and

its characters as char.

A line is treated as literal unless it starts with the regex introducer character (/ in the above

example). In contrast, the line-regex is always in effect (in a sense, the ~ modifier is its intro

ducer). Note that the here-string regex naturally (since there is only one line) must start with

an introducer.

A char-regex line that starts with an introducer must also end with one optionally followed by

match flags, for example:

$* >>~/EOO/
/ba+r/i
/ba+z/i
EOO

The following match flags are recognized:

i

Perform case-insensitive match.

d

Invert the dot character (.) escaping. With this flag unescaped dots are treated as literal

characters while the escaped ones (\.) – as matching any character. Note that dots speci

fied within character classes ([.]) are not affected.

Any character can act as a regex introducer. For here-strings it is the first character in the

string. For here-documents the introducer is specified as part of the end marker. In this case

the first character is the introducer, everything after that and until the second occurrence of the

introducer is the actual end marker, and everything after that are global match flags. Global

match flags apply to every char-regex (but not literal lines or the line-regex itself) in this

here-document. Note that there is no way to escape the introducer character inside the regex.

As an example, here is a shorter version of the previous example that also uses a different

introducer character.

$* >>~%EOO%i
%ba+r%
%ba+z%
EOO

A line-char is treated as an ordinary, non-syntax character with regards to the outer-level

line-regex. Lines that start with a regex introducer but do not end with one are used to specify

syntax line-chars. Such syntax line-chars can also be specified after (or instead of) match

flags. For example:

Revision 0.17, April 202438 The build2 Testscript Language

5.21 Output Regex

$* >>~/EOO/
/(
/fo+x/|
/ba+r/|
/ba+z/
/)+
EOO

As an illustration, if we call the /fo+x/ expression A, /ba+r/ – B, and /ba+z/ – C, then

we can represent the above line-regex in the following more traditional form:

(A|B|C)+

Only characters from the .()|*+?{}\0123456789,=! set are allowed as syntax

line-chars with the presence of any other characters being an error.

A blank line as well as the // sequence (assuming / is the introducer) are treated as an empty

line-char. For the purpose of matching, newlines are viewed as separators rather than being

part of a line. In particular, in this model, the customary trailing newline at the end of the

output introduces a trailing empty line-char. As a result, unless the : (no newline) redirect

modifier is used, an empty line-char is implicitly added at the end of line-regex.

5.22 Cleanup

cleanup: (’&’|’&?’|’&!’) (<file>|<dir>)

If a command creates extra files or directories, then they can be registered for automatic

cleanup at the end of the scope (test or group). Files mentioned in redirects are registered

automatically. Additionally, certain builtins (for example touch and mkdir) also register

their output files/directories automatically (as described in each builtin’s documentation).

If the path ends with a directory separator (slash), then it is assumed to be a directory. Other

wise – a file. A directory about to be removed must be empty (no unexpected output).

The & syntax registers a normal or always cleanup: the test fails if the file/directory does not

exist. The &? syntax is a maybe cleanup: the file/directory is removed if it exists. Finally, &!
is a never cleanup: it disables a previously registered cleanup for this file/directory (primarily

used to disable automatic cleanups registered by builtins).

The path components may contain the * and ? wildcard characters with the following seman

tics:

? - any single character
* - all immediate files
*/ - all immediate sub-directories (which must be empty)
** - all files recursively
**/ - all sub-directories recursively (which must be empty)
***/ - all sub-directories recursively (which must be empty)
 as well as the start directory itself

39Revision 0.17, April 2024 The build2 Testscript Language

5.22 Cleanup

In addition, if the last component in the path is *** (without trailing directory separator), then

it matches all files and sub-directories recursively as well as the start directory itself. For

example, the following cleanup will remove dir/ and its content recursively.

$* &dir/***

Registering a path for cleanup that is outside the script working directory is an error. You can,

however, clean them up manually with rm/rmdir -f.

5.23 Description

description:
 +(’:’ <text>)

Description lines start with a colon (:) and are used to document tests and test groups. In a

sense they are formalized comments.

A description can be leading, that is, specified before the test or group. For tests it can also be

trailing – specified as a single line after the (last) command of the test. It is an error to specify

both leading and trailing descriptions.

By convention the leading description has the following format with all three components

being optional.

: <id>
: <summary>
:
: <details>

If the first line in the description does not contain any whitespaces, then it is assumed to be

the test or test group id. If the next line is followed by a blank line, then it is assumed to be the

test or test group summary. After the blank line come optional details which are free-form.

The trailing description can only be used to specify the id or summary (but not both).

If an id is not specified then it is automatically derived from the test or test group location. If

the test or test group is contained directly in the top-level testscript file, then just its start line

number is used as an id. Otherwise, if the test or test group resides in an included file, then the

start line number (inside the included file) is prefixed with the line number of the include

directive followed by the included file name (without the extension) in the form

<line>-<file>-. This process is repeated recursively in case of nested inclusions.

The start line for a scope (either test or group) is the line containing its opening brace ({) and

for a test – the first test line.

Revision 0.17, April 202440 The build2 Testscript Language

5.23 Description

6 Builtins

The Testscript language provides a portable subset of POSIX utilities as builtins. Each utility

normally implements the commonly used subset of the corresponding POSIX specification,

though there are deviations (for example, in option handling) and extensions, as described in

this chapter. Note also that the builtins are implemented in-process with some of the simple

ones such as true/false, mkdir, etc., being just function calls.

To run a system utility instead of a builtin prefix its name with ^, for example:

^cat --squeeze-blank <file>

6.1 cat

cat <file>...

Read files in order and write their contents to stdout. Read from stdin if no file is speci

fied or - is specified as a file name.

6.2 cp

cp [-p] [--no-cleanup] <src-file> <dst-file>
cp [-p] [--no-cleanup] -R|-r <src-dir> <dst-dir>
cp [-p] [--no-cleanup] <src-file>... <dst-dir>/
cp [-p] [--no-cleanup] -R|-r <src-path>... <dst-dir>/

Copy files and/or directories. The first two forms make a copy of a single entity at the speci

fied path. The last two copy one or more entities into the specified directory.

If the last argument does not end with a directory separator and the -R or -r option is not

specified, then the first synopsis is assumed where cp copies src-file as dst-file failing if the

src-file filesystem entry does not exist or if either filesystem entry is a directory.

If the last argument does not end with a directory separator and the -R or -r option is speci

fied, then the second synopsis is assumed where cp copies src-dir as dst-dir failing if the

src-dir filesystem entry does not exist or is not a directory or if the dst-dir filesystem entry

already exists.

In both these cases cp also fails if more than two arguments are specified.

If the last argument ends with a directory separator and the -R or -r option is not specified,

then the third synopsis is assumed where cp copies one or more src-file files into the dst-dir

directory as if by executing the following command for each file:

cp src-file dst-dir/src-name

Where src-name is the last path component in src-file.

41Revision 0.17, April 2024 The build2 Testscript Language

6 Builtins

In this case cp fails if a filesystem entry for any of the src-file files does not exist or is a

directory or if the dst-dir filesystem entry does not exist or is not a directory.

Finally, if the last argument ends with a directory separator and the -R or -r option is speci

fied, then the last synopsis is assumed where cp copies one or more src-path files or directo

ries into the dst-dir directory as if by executing the following command for each file:

cp src-path dst-dir/src-name

And the following command for each directory:

cp -R src-path dst-dir/src-name

Where src-name is the last path component in src-path. The determination of whether

src-path is a file or directory is done by querying the filesystem entry type.

In this case cp fails if a filesystem entry for any of the src-path files/directories does not exist

or if the dst-dir filesystem entry does not exist or is not a directory. For a src-path directory

cp also fails if the dst-dir/src-name filesystem entry already exists.

-R|-r|--recursive

Copy directories recursively.

-p|--preserve

Copy permissions as well as modification and access times.

Unless the --no-cleanup option is specified, newly created files and directories that are

inside the script working directory are automatically registered for cleanup.

6.3 date

date [-u] [+<format>]

Print the local time or, if the -u option is specified, the Coordinated Universal Time (UTC) in

the specified format.

The optional format argument is the std::put_time() C++11 manipulator’s format

string that in addition supports the nanoseconds specifier in the form %[<d>N] where <d> is

the optional single delimiter character, for example .. If the nanoseconds part is 0, then it is

not printed (nor the delimiter character). Otherwise, the nanoseconds part is padded to 9 char

acters with leading zeros.

Note that this builtin’s format specifier set is a superset of the POSIX date utility.

If the format argument is not specified, then %a %b %e %H:%M:%S %Z %Y is used by

default.

-u|--utc

Print Coordinated Universal Time (UTC).

Revision 0.17, April 202442 The build2 Testscript Language

6.3 date

6.4 diff

diff [-u|-U <num>] <file1> <file2>

Compare the contents of file1 and file2.

The diff utility is not a builtin. Instead, the test platform is expected to provide a (reason

ably) POSIX-compatible implementation. It should at least supports the -u and -U options

and recognize the - file name as an instruction to read from stdin. On Windows, GNU

diff can be assumed (provided as part of the build2 toolchain).

-u

Produce output in the unified format.

-U <num>

Produce output in the unified output format with num lines of context.

6.5 echo

echo <string>...

Write strings to stdout separating them with a single space and ending with a newline.

6.6 env

env [-t <sec>] [-c <dir>] [-u <name>]... [-] [<name>=<value>]... -- \
 <cmd>

Run a command limiting its execution time, changing its working directory, and/or

adding/removing the variables to/from the environment.

Note that env is a pseudo-builtin. In particular, its name and the -- separator must be speci

fied literally on the command line. Specifically, they must not be the result of an expansion.

Also note that the -- separator must always be present.

To avoid ambiguity, the variable assignments can be separated from the options with the

explicit - separator. In the example below the --unset variable is added to the environ

ment:

env - --unset=FOO -- $*

-t|--timeout <sec>

Terminate the command if it fails to complete within the specified number of seconds.

See also the timeout builtin.

-s|--timeout-success

Assume the command terminated due to the timeout specified with the -t|--timeout
option to have succeeded.

-c|--cwd <dir>

Change the command’s working directory.

43Revision 0.17, April 2024 The build2 Testscript Language

6.4 diff

-u|--unset <name>

Remove the specified variable from the environment.

See also the export builtin.

6.7 exit

exit [<diagnostics>]

Exit the current group or test scope skipping any remaining commands.

Note that exit is a pseudo-builtin. In particular, it must be the only command in the pipe

expression and its standard streams cannot be redirected.

Without any arguments exit exits the current scope successfully. In this case, if exiting a

group scope, teardown commands and cleanups are executed normally.

If an argument is specified, then exit exits the current scope and all the outer scopes unsuc

cessfully, as if the exit command failed. In this case the argument must be the diagnostics

string describing the error.

6.8 export

export [-c <name>]... [-u <name>]... [<name>=<value>]...

Add/remove the variables to/from the current scope commands execution environment and/or

clear the previous additions/removals.

Note that export is a pseudo-builtin. In particular, it must be the only command in the pipe

expression, it either succeeds or terminates abnormally, and its standard streams cannot be

redirected.

The environment variables can be added and removed on multiple levels: with the export
builtin in the nested test group scopes and the test scope and with the env builtin for individ

ual commands. Before executing a command, all the variable additions and removals from its

environment hierarchy are merged so that those specified in the inner levels override those

specified in the outer levels.

-c|--clear <name>

Clear the previous variable addition/removal to/from the environment, if exists.

-u|--unset <name>

Remove the specified variable from the environment.

Revision 0.17, April 202444 The build2 Testscript Language

6.7 exit

6.9 false

false

Do nothing and terminate normally with the 1 exit code (indicating failure).

6.10 find

find <start-path>... [<expression>]

Search for filesystem entries in a filesystem hierarchy. Traverse filesystem hierarchies from

each start-path specified on the command line, evaluate for each filesystem entry the boolean

expression consisting of the options-like arguments called primaries, and print the filesystem

entry path if it evaluates to true, one path per line. The primaries are combined into the

expression with an implicit logical AND operator. The empty expression always evaluates to

true.

Note that the implementation deviates from POSIX in a number of ways. It only supports a

small subset of primaries and doesn’t support compound expressions, negations, logical OR

and (explicit) AND operators, and the -type primary values other than f, d, and l. It,

however, supports the -mindepth and -maxdepth primaries which are not specified by

POSIX but are supported by the major find utility implementations.

The following primaries are supported:

-name <pattern>

Evaluates to true if a filesystem entry base name matches the specified wildcard

pattern.

-type <type>

Evaluates to true if a filesystem entry type matches the specified type: f for a regular

file, d for a directory, and l for a symbolic link.

-mindepth <depth>

Evaluates to true if a filesystem entry directory level is not less than the specified

depth. The level of the start-path entries specified on the command line is 0.

-maxdepth <depth>

Evaluates to true if a filesystem entry directory level is not greater than the specified

depth. The level of the start-path entries specified on the command line is 0. Note that

the implementation is smart enough not to traverse a directory when the maximum depth

is reached.

6.11 ln

ln [--no-cleanup] -s <target-path> <link-path>
ln [--no-cleanup] -s <target-path>... <dir>/

Create symbolic links to files and/or directories. The first form creates a single target link at

the specified path. The second form creates links to one or more targets inside the specified

directory.

45Revision 0.17, April 2024 The build2 Testscript Language

6.9 false

If the last argument does not end with a directory separator, then the first synopsis is assumed

where ln creates the symbolic link to target-path at link-path failing if the target-path

filesystem entry does not exist, link-path filesystem entry already exists or more than two

arguments are specified. If target-path is relative, then it is assumed to be relative to the

link-path’s directory.

If the last argument ends with a directory separator, then the second synopsis is assumed

where ln creates one or more symbolic links to target-path files or directories inside the dir

directory as if by executing the following command for each target:

ln -s target-path dir/target-name

Where target-name is the last path component in target-path.

For both cases ln falls back to creating a hard link if symbolic link creation is not supported.

If hard link creation is not supported either, then ln falls back to copying the content, recur

sively in case of a directory target.

-s|--symbolic

Create symbolic links. Note that creation of hard links is currently not supported, so this

option is always required.

Unless the --no-cleanup option is specified, created filesystem entries that are inside the

script working directory are automatically registered for cleanup.

6.12 mkdir

mkdir [--no-cleanup] [-p] <dir>...

Create directories. Unless the -p option is specified, all the leading directories must exist and

the directory itself must not exist.

-p|--parents

Create missing leading directories and ignore directories that already exist.

Unless the --no-cleanup option is specified, newly created directories (including the

leading ones) that are inside the script working directory are automatically registered for

cleanup.

6.13 mv

mv [--no-cleanup] [-f] <src-path> <dst-path>
mv [--no-cleanup] [-f] <src-path>... <dst-dir>/

Rename or move files and/or directories.

The first form moves an entity to the specified path. The parent directory of the destination

path must exist. An existing destination entity is replaced with the source if they are both

either directories or non-directories (files, symlinks, etc). In the former case the destination

Revision 0.17, April 202446 The build2 Testscript Language

6.12 mkdir

directory must be empty. The source and destination paths must not be the same nor be the

test working directory or its parent directory. The source path must also not be outside the

script working directory unless the -f option is specified.

The second form moves one or more entities into the specified directory as if by executing the

following command for each entity:

mv src-path dst-dir/src-name

Where src-name is the last path component in src-path.

-f|--force

Do not fail if a source path is outside the script working directory.

Unless the --no-cleanup option is specified, the cleanups registered for the source entities

are adjusted according to their new names and/or locations. If the destination entity already

exists or is outside the test working directory then the source entity cleanup is canceled.

Otherwise the source entity cleanup path is replaced with the destination path. If the source

entity is a directory, then, in addition, cleanups that are sub-paths of this directory are made

sub-paths of the destination directory.

Note that the implementation deviates from POSIX in a number of ways. It never interacts

with the user and fails immediately if unable to act on an argument. It does not check for dot

containment in the path nor considers filesystem permissions. In essence, it simply tries to

move the filesystem entry.

6.14 rm

rm [-r] [-f] <path>...

Remove filesystem entries. To remove a directory (even empty) the -r option must be speci

fied.

The path must not be the test working directory or its parent directory. It also must not be

outside the script working directory unless the -f option is specified.

-r|--recursive

Remove directories and their contents recursively.

-f|--force

Do not fail if no path is specified, the path does not exist, or is outside the script working

directory.

Note that the implementation deviates from POSIX in a number of ways. It never interacts

with the user and fails immediately if unable to act on an argument. It does not check for dot

containment in the path nor considers filesystem permissions. In essence, it simply tries to

remove the filesystem entry.

47Revision 0.17, April 2024 The build2 Testscript Language

6.14 rm

6.15 rmdir

rmdir [-f] <dir>...

Remove directories. The directory must be empty and not be the test working directory or its

parent directory. It also must not be outside the script working directory unless the -f option

is specified.

-f|--force

Do not fail if no directory is specified, the directory does not exist, or is outside the script

working directory.

6.16 sed

sed [-n] [-i] (-e <script>)... [<file>]

Read text from file, make editing changes according to script, and write the result to stdout.

If multiple scripts are present, then they are applied in the order specified. If file is not speci

fied or is -, read from stdin. If both file and the -i option are specified then edit the file in

place. Specifying -i when reading from stdin is illegal.

Note that this builtin implementation deviates substantially from POSIX sed (as described

next). Most significantly, the regular expression flavor is ECMAScript (more specifically,

ECMA-262-based C++11 regular expressions).

-n|--quiet

Suppress automatic printing of the pattern space at the end of the script execution.

-i|--in-place

Edit file in place.

-e|--expression <script>

Editing commands to be executed. At least one script must be specified.

To perform the transformation sed reads each line of input (without the newline) into the

pattern space. It then executes the script commands on the pattern space. At the end of the

script execution, unless the -n option is specified, sed writes the pattern space to output

followed by a newline.

Currently, only single-command scripts using the following editing commands are supported.

s/<regex>/<replacement>/<flags>

Match regex against the pattern space. If successful, replace the part of the pattern space

that matched with replacement. If the g flag is present in flags then continue substituting

subsequent matches of regex in the same pattern space. If the p flag is present in flags

and the replacement has been made, then write the pattern space to stdout and start the

next cycle by proceeding to read the next line of input. If both g and p were specified,

then write the pattern space out only after the last substitution.

Revision 0.17, April 202448 The build2 Testscript Language

6.15 rmdir

Any character other than \ (backslash) or newline can be used instead of / (slash) to

delimit regex, replacement, and flags. Note that no escaping of the delimiter character is

supported.

If regex starts with ^, then it only matches at the beginning of the pattern space. Simi

larly, if it ends with $, then it only matches at the end of the pattern space. If the i flag is

present in flags, then the match is performed in a case-insensitive manner.

In replacement, besides the standard ECMAScript escape sequences ($1, $2, $&, etc),

the following additional sequences are recognized:

 \N - Nth capture, where N is in the 1-9 range.

 \u - Convert next character to the upper case.
 \l - Convert next character to the lower case.

 \U - Convert next characters until \E to the upper case.
 \L - Convert next characters until \E to the lower case.

 \n - Newline.
 \\ - Literal backslash.

Note that unlike POSIX semantics, just & does not have a special meaning in replace

ment.

6.17 set

set [-e] [-n|-w] <var> [<attr>]

Set variable from the stdin input.

Note that set is a pseudo-builtin. In particular, it must be the last command in the pipe

expression, it either succeeds or terminates abnormally, and its stderr cannot be redirected.

Note also that all the variables on the command line are expanded before any set commands

are executed, for example:

foo = foo
echo ’bar’ | set foo && echo $foo # foo
echo $foo # bar

Unless the -e option is specified, a single final newline is ignored in the input.

If the -n option is specified, then the input is split into a list of elements at newlines, includ

ing a final blank element in case of -e. Multiple consecutive newlines are not collapsed.

If the -w option is specified, then the input is split into a list of elements at whitespaces,

including a final blank element in case of -e. In this mode if -e is not specified, then all (and

not just newline) trailing whitespaces are ignored. Multiple consecutive whitespaces (includ

ing newlines) are collapsed.

49Revision 0.17, April 2024 The build2 Testscript Language

6.17 set

If neither -n nor -w is specified, then the entire input is used as a single element, including a

final newline in case of -e.

If the attr argument is specified, then it must contain a list of value attributes enclosed in [],

for example:

sed -e ’s/foo/bar/’ input | set x [string]

Note that this is also the only way to set a variable with a computed name, for example:

foo = FOO
set $foo [null] <-

-e|--exact

Do not ignore the final newline.

-n|--newline

Split the input into a list of elements at newlines.

-w|--whitespace

Split the input into a list of elements at whitespaces.

6.18 sleep

sleep <seconds>

Suspend the current test or test group execution for at least the specified number of seconds.

Note that in order to improve resource utilization, the implementation may sleep longer than

requested, potentially significantly.

6.19 test

test -f|-d <path>

Test the specified path according to one of the following options. Succeed (0 exit code) if the

test passes and fail (non-0 exit code) otherwise.

-f|--file

Path exists and is to a regular file.

-d|--directory

Path exists and is to a directory.

Note that tests dereference symbolic links.

6.20 timeout

timeout [-s] [<group-timeout>]/[<test-timeout>]
timeout [-s] <timeout>

Revision 0.17, April 202450 The build2 Testscript Language

6.18 sleep

Specify test and/or test group timeout.

The first form sets the test group and/or individual test timeouts and can only be used as a

setup command. Either of the timeouts (but not both) can be omitted.

The second form sets the test group timeout if used as a setup or teardown command and the

remaining test fragment timeout if used as a test command.

In both forms the timeouts are specified in seconds with the zero value clearing the previously

set timeout.

Note that timeout is a pseudo-builtin. In particular, it must be the only command in the pipe

expression, it either succeeds or terminates abnormally, and its standard streams cannot be

redirected.

The timeouts can be set on multiple levels: via the config.test.timeout variable on

the (potentially nested) project root scopes (see test module for details), with the timeout
builtin in the nested test group scopes and the test scope, and with the env builtin for individ

ual commands. Each command must complete before the nearest timeout from its timeout

hierarchy. Failed that, a command is terminated forcibly causing the entire test operation to

fail unless the expired timeout was specified with the --success option, in which case the

timed out command is assumed to have succeeded.

-s|--success

Assume a command terminated due to this timeout to have succeeded.

6.21 touch

touch [--no-cleanup] [--after <ref-file>] <file>...

Change file access and modification times to the current time. Create files that do not exist.

Fail if a filesystem entry other than the file exists for the specified name.

--after <ref-file>

Keep touching the file until its modification time becomes after that of the specified

reference file.

Unless the --no-cleanup option is specified, newly created files that are inside the script

working directory are automatically registered for cleanup.

6.22 true

true

Do nothing and terminate normally with the 0 exit code (indicating success).

51Revision 0.17, April 2024 The build2 Testscript Language

6.21 touch

7 Style Guide

This chapter describes the testing guidelines and the Testscript style that is used in the

build2 project.

The primary goal of testing in build2 is not to exhaustively test every possible situation.

Rather, it is to keep tests comprehensible and maintainable in the long run.

To this effect, don’t try to test every possible combination; this striving will quickly lead to

everyone drowning in hundreds of tests that are only slight variations of each other. Some

times combination tests are useful but generally keep things simple and test one thing at a

time. The belief is that real-world usage will uncover much more interesting interactions

(which must become regression tests) that you would never have thought of yourself. To

quote a famous physicist, "... the imagination of nature is far, far greater than the imagination

of man."

To expand on combination tests, don’t confuse them with corner case tests. As an example,

say you have tests for feature A and B. Now you wonder what if for some reason they don’t

work together. Note that you don’t have a clear understanding let alone evidence of why they

might not work together; you just want to add one more test, for good measure. We don’t do

that. To put it another way, for each test you should have a clear understanding of what logic

in the code you are testing.

One approach that we found works well is to look at the diff of changes you would like to

commit and make sure you at least have a test that exercises each happy (non-error) logic

branch. For important code you may also want to do so for unhappy logic branches.

It is also a good idea to keep testing in mind as you implement things. When tempted to add a

small special case just to make the result a little bit nicer, remember that you will also have to

test this special case.

If the functionality is well exposed in the program, prefer functional to unit tests since the

former test the end result rather than something intermediate and possibly mocked. If

unit-testing a complex piece of functionality, consider designing a concise, textual

mini-format for input (either via command line or stdin) and output rather than constructing

the test data and expected results programmatically.

Documentation-wise, each test should at least include an explicit id that adequately summa

rizes what it tests. Add a summary or even details for more complex tests. Failure tests usually

fall into this category.

Use the leading description for multi-line tests, for example:

: multi-name
:
$* ’John’ ’Jane’ >>EOO
Hello, John!
Hello, Jane!
EOO

Revision 0.17, April 202452 The build2 Testscript Language

7 Style Guide

Here is an example of a description that includes all three components:

: multi-name
: Test multiple name arguments
:
: This test makes sure we properly handle multiple names passed as
: separate command line arguments.
:
$* ’John’ ’Jane’ >>EOO
Hello, John!
Hello, Jane!
EOO

Separate multi-line tests with blank lines. You may want to place larger tests into explicit test

scopes for better visual separation (this is especially helpful if the test contains blank lines, for

example, in here-document fragments). In this case the description should come before the

scope. Note that here-documents are indented as well. For example:

: multi-name
:
{
 $* ’John’ ’Jane’ >>EOO
 Hello, John!

 Hello, Jane!

 EOO
}

One-line tests may use the trailing description (which must always be the test id). Within a

test block (one-liners without a blank between them), the ids should be aligned, for example:

$* John >’Hi, John!’ : custom-john
$* World >’Hello, World!’ : custom-world

Note that you are free to put multiple spaces between the end of the command line and the

trailing description. But don’t try to align ids between blocks – this is a maintenance pain.

If multiple tests belong to the same group, consider placing them into an explicit group scope.

A good indication that tests form a group is if their ids start with the same prefix, as in the

above example. If placing tests into a group scope, use the prefix as the group’s id and don’t

repeat it in the tests. It is also a good idea to give the summary of the group, for example:

: custom
: Test custom greetings
:
{
 $* John >’Hi, John!’ : john
 $* World >’Hello, World!’ : world
}

In the same vein, don’t repeat the testscript id in group or test ids. For example, if the above

tests were in greeting.testscript, then using custom-greeting as the group id

would be unnecessarily repetitive since the id path would then become greet
ing/custom-greeting/john, etc.

53Revision 0.17, April 2024 The build2 Testscript Language

7 Style Guide

We quote values that are strings as opposed to options, file names, paths (unless they contain

spaces), integers, or boolean. When quoting, use single quotes unless you need expansions (or

single quotes) inside. Note that unlike Bash you do not need to quote variable expansions in

order to preserve whitespaces. For example:

arg = ’Hello Spaces’
echo $arg # Hello Spaces

For further reading on testing that we (mostly) agree with, see:

How I Write Tests by Nelson Elhage

The only part we don’t agree on is the (somewhat implied) suggestion to write as many

tests as possible.

Revision 0.17, April 202454 The build2 Testscript Language

7 Style Guide

https://blog.nelhage.com/2016/12/how-i-test/

	Preface
	1 Introduction
	2 Build System Integration
	3 Model and Execution
	4 Lexical Structure
	5 Syntax and Semantics
	5.1 Notation
	5.2 Grammar
	5.3 Script
	5.4 Scope
	5.5 Scope-If
	5.6 Directive
	5.6.1 Include

	5.7 Setup and Teardown
	5.8 Test
	5.9 Variable
	5.10 Variable-If
	5.11 Variable-For
	5.12 Variable-While
	5.13 Command
	5.14 Command-If
	5.15 Command-For
	5.16 Command-While
	5.17 Redirect
	5.18 Input Redirect
	5.19 Output Redirect
	5.20 Here-Document
	5.21 Output Regex
	5.22 Cleanup
	5.23 Description

	6 Builtins
	6.1 cat
	6.2 cp
	6.3 date
	6.4 diff
	6.5 echo
	6.6 env
	6.7 exit
	6.8 export
	6.9 false
	6.10 find
	6.11 ln
	6.12 mkdir
	6.13 mv
	6.14 rm
	6.15 rmdir
	6.16 sed
	6.17 set
	6.18 sleep
	6.19 test
	6.20 timeout
	6.21 touch
	6.22 true

	7 Style Guide

