
The build2 Operating System

Copyright © 2014-2024 Code Synthesis Ltd.

Permission is granted to copy, distribute and/or modify this document under the terms of the

MIT License.

Revision 0.18, June 2024

This revision of the document describes the build2 Build OS 0.18.x series.

Table of Contents

.................. 1Preface

................. 11 Introduction

................. 12 Architecture

.................. 23 Booting

................ 23.1 Reboot

............... 23.2 Network Boot

............... 33.3 Local Boot

................ 34 Configuration

............... 34.1 CPU and RAM

................ 44.2 Storage

............... 44.2.1 State

.............. 54.2.2 Machines

................ 64.3 Network

................. 64.4 Email

................. 64.5 SSH

............... 74.6 Toolchains

............... 84.7 Controllers

................ 85 Build Machines

.............. 95.1 Adding a Machine

............. 105.2 Upgrading a Machine

.............. 105.3 Remove a Machine

............. 115.4 Logging into a Machine

iRevision 0.18, June 2024 The build2 Operating System

Table of Contents

Preface

This document describes Build OS, the build2 build operating system.

1 Introduction

Build OS is a Debian GNU/Linux-based in-memory network-booted operating system

specialized for autonomous building of software using the build2 toolchain. It’s primary

purpose is to run the build2 build bot (bbot), build slave (bslave), or both.

A machine that run an instance of Build OS is called a build host. A build host runs the bbot
and/or bslave in the agent mode. The actual building is performed in the virtual machines

and/or containers. For bbot it is normally one-shot virtual machines and for bslave it is

normally containers but can also be long-running virtual machines. Inside virtual

machines/containers, bbot and bslave run in the worker mode and receive build tasks from

their respective agents.

2 Architecture

Build OS root filesystem (rootfs) resides entirely in RAM with all changes (such as instal

lation of the build2 toolchain) discarded on the next reboot. A small amount of persistent

(but not precious) state is stored in /state (see State). A minimum of 4GB of RAM is

required for Build OS itself (that is, excluding any virtual machines and containers).

After booting the kernel, the Build OS execution starts with a custom init script which

performs low-level configuration and setup and then hands off the initialization to systemd.

At the end of systemd startup the Build OS monitor script (buildos) is started as a

systemd service. On startup this script bootstraps the build2 toolchain, builds the bbot
package, and starts it (as another systemd service) in the agent mode. After that the monitor

starts monitoring for OS and toolchain changes. If either is detected, the host is rebooted,

which will trigger both booting the latest OS and building of the latest build2 toolchain and

bbot.

@@ TODO: init steps.

The monitor service (and bbot that it starts) are executed as the build user/group. The

home directory of this user is /build/. It has the following subdirectories:

/build/tftp/

A size-limited tmpfs filesystem that is used to communicate with build machines as

well as for build host log access.

This directory is read-accessible via the TFTP server running on the default port. A

bbot agent also makes the bootstrap/ and build/ sub-directories inside this

directory temporarily write-accessible to build machines by running custom instances of

1Revision 0.18, June 2024 The build2 Operating System

Preface

the TFTP server on other ports.

/build/toolchains/

Contains build2 toolchain installations after bootstrap. Each version is installed into a

subdirectory named as the toolchain name. See Toolchains for details.

/build/bots/

Contains bbot installations. Each version is installed into a subdirectory named as the

toolchain name. See Toolchains for details.

/build/machines/

Contains virtual machines and containers. See Machines for details.

3 Booting

Build OS is normally booted over the network using PXE but can also be booted locally from

the kernel image and initrd directly.

3.1 Reboot

Build OS can detect when the OS or toolchain have been updated and automatically reboot

the build host. This is achieved by polling the URLs specified with the

buildos.buildid_url and buildos.toolchain_url kernel command line param

eters.

The buildos.buildid_url value should point to the buildos-buildid file that

comes along the kernel image and initrd. The buildos.toolchain_url value is the

location of the toolchain checksums file as described in Toolchains. See Network Boot for the

usage example.

3.2 Network Boot

Here we assume that you have already established your PXE setup using PXELINUX. That is,

you have configured a TFTP server that hosts the pxelinux initial bootstrap program (NBP)

and configured a DHCP server to direct PXE client to this server/NBP.

To setup PXE boot of Build OS, perform the following steps:

1. Copy the Build OS -image, -initrd, and -buildid files to the TFTP server. For

example:

mkdir -p /var/lib/tftpboot/buildos
cp buildos-image buildos-initrd buildos-buildid \
 /var/lib/tftpboot/buildos/

Revision 0.18, June 20242 The build2 Operating System

3 Booting

2. Assuming the host MAC address is de:ad:be:ef:b8:da, create a host-specific

configuration file (or use default as the last path component for a configuration that

applies to all hosts):

cat <<EOF >/var/lib/tftpboot/pxelinux.cfg/01-de-ad-be-ef-b8-da
default buildos
prompt 1
timeout 50

label buildos
 menu label Build OS
 kernel /buildos/buildos-image
 initrd /buildos/buildos-initrd
 append buildos.smtp_relay=example.org buildos.admin_email=admin@example.org buildos.buildid_url=tftp://<os-host>/buildos/buildos-buildid buildos.toolchain_url=https://<toolchain-host>/toolchain.sha256 buildos.toolchain_trust=<repo-fp>
EOF

Where <os-host> is the address of the TFTP server (the same address as returned by

the DHCP server to PXE clients), <toolchain-host> is the host that serves the

toolchain archives, and <repo-fp> is the toolchain repository certificate fingerprint to

trust. Note that all the parameters in append must be specified on a single line.

3. You can test the setup using QEMU/KVM, for example:

$ sudo kvm \
 -m 8G \
 -netdev tap,id=net0,script=./qemu-ifup \
 -device e1000,netdev=net0,mac=de:ad:be:ef:b8:da \
 -boot n

3.3 Local Boot

During testing it is often useful to boot Build OS directly from the kernel image and initrd

files. As an example, here is how this can be done using QEMU/KVM:

sudo kvm \
 -m 8G \
 -netdev tap,id=net0,script=./qemu-ifup \
 -device e1000,netdev=net0,mac=de:ad:be:ef:b8:da \
 -kernel buildos-image -initrd buildos-initrd

4 Configuration

4.1 CPU and RAM

A Build OS instances divides available CPUs and RAM (minus reserved, see below) into

slices that are then committed to each instance of each toolchain. In case of CPU it normally

makes sense to overcommit this resource in order to improve utilization. This can be achieved

by specifying the overcommit values as a ratio with buildos.cpu_overcommit. For

example, given the following CPU overcommit:

buildos.cpu_overcommit=3/2

A Build OS machine with 8 CPUs (hardware threads) and three instances will assign 4 CPUs

(8 * 3/2 / 3) to each slice.

3Revision 0.18, June 2024 The build2 Operating System

4 Configuration

It is also possible to specify CPU affinity with buildos.cpu_affinity. For example,

specifying:

buildos.cpu_affinity=2-9

Will restrict the instances to only running on CPUs 2-9.

It is possible to reserve a number of CPUs and an amount of RAM to Build OS with the

buildos.cpu_reserved and buildos.ram_reserved (in GiB) kernel command

line parameters. If unspecified, 4GiB of RAM is reserved by default.

An amount of RAM can be reserved for auxiliary machines with buildos.ram_auxil
iary. This amount will also be divided into slices and committed to each instance.

Finally, if the total available RAM cannot be auto-detected, it can be specified manually with

buildos.ram_total. Here is a complete example of specifying all the possible RAM

values:

buildos.ram_total=64
buildos.ram_reserved=4
buildos.ram_auxiliary=12

Assuming three instances, the configuration will assign 16GiB of build and 4GiB of auxiliary

RAM to each instance and keep 4GiB reserved to Build OS.

4.2 Storage

Build OS configures storage based on the labels assigned to disks and partitions (collectively

refered to as disks from now on). Build OS requires storage for state as well as virtual

machines and containers.

4.2.1 State

Build OS stores a small amount of state on a disk labeled buildos.state (mounted as

/state). This includes random number generator state, SSH server host keys, and so on.

While this state is persistent, it is not precious.

The stored state is fairly small (hundreds of megabytes) and is not performance-critical. While

one can create a small state partition on the same physical disk as used for machines (see

below), having it on a separate disk makes it easier to move machine disks around. Based on

these requirements, a small, good-quality USB flash drive or flash card is a good option.

While any suitable filesystem can be used, ext4 is a good choice, with journaling disabled if

used on a flash drive/card. For example:

mkfs.ext4 -L buildos.state -O ^has_journal /dev/sdX

Revision 0.18, June 20244 The build2 Operating System

4.2 Storage

Flash drives and cards tend to fail over time and while the state is not precious, recreating it

would also require updating the public key on all the controllers that this build host serves. As

a result, it may be prudent to backup it up.

4.2.2 Machines

For virtual machine and container storage we can use a single disk, in which case it can be

labeled just buildos.machines. If we would like to use multiple disks, then they should

be labeled buildos.machines.<volume>. In both cases the disks must be formatted as

btrfs.

In a single disk configuration, the disk is mounted as /build/machines/default/ (in

other words, as the default valume called default). In a multi-disk configuration, each disk

is mounted as /build/machines/<volume>/.

If no disks are found for required storage, then the boot process is interrupted with a shell

prompt where you can format and/or lable a suitable disk. You can also view the storage

configuration on a booted Build OS instance by examining /etc/fstab.

As an example, let’s consider the first boot of a clean machine that has an SSD disk as

/dev/sda and which we would like to use for virtual machine storage. We would also like

to over-provision this SSD by 10% to (potentially) prolong its life and increase performance

(you may want to skip this step if you are using a datacenter-grade SSD that would normally

already be generously over-provisioned).

On the first boot we will be presented with a shell prompt which we use to over-provision the

disk:

fdisk -l /dev/sda # Query disk information.
hdparm -N /dev/sda # Query disk/host protection area sizes.
hdparm -Np<COUNT> /dev/sda # COUNT = sector count * 0.9
hdparm -N /dev/sda # Verify disk/host protection area sizes.
^D # Exit shell and reboot.

Note that this may not always work, depending on the disk controller used. An alternative

approach is to use the mkfs.btrfs --byte-count option when formatting the disk to

leave some disk space untouched and unused.

After the reboot we will be presented with a shell prompt again where we confirm over-provi

sioning, format the disk as btrfs, and label it as buildos.machines:

fdisk -l /dev/sda # Confirm disk size decreased by 10%.
mkfs.btrfs -L buildos.machines -m single /dev/sda
^D # Exit shell and reboot.

To create a single btrfs disk that spans multiple physical devices:

mkfs.btrfs -L buildos.machines -d single -m single /dev/sda /dev/sdb

5Revision 0.18, June 2024 The build2 Operating System

4.2.2 Machines

4.3 Network

Network is configured via DHCP. Initially, all Ethernet interfaces that have carrier are tried in

(some) order and the first interface that is successfully configured via DHCP is used.

Hostname is configured from the DHCP information. Failed that, a name is generated based

on the MAC address, in the form build-xxxxxxxxxx. @@ Maybe also kernel cmdline?

Based on the discovery of the Ethernet interface, two bridge interfaces are configured: br0 is

a public bridge that includes the Ethernet interface and is configured via DHCP. br1 is a

private interface with NAT to br0 with dnsmasq configured as a DHCP on this interface.

Normally, br0 is used for bslave virtual machines/container (since they may need to be

accessed directly) and br1 – for bbot virtual machines. You can view the bridge configura

tion on a booted Build OS instance by examining /etc/network/interfaces.

@@ TODO: private network parameters.

4.4 Email

A Build OS instance sends various notifications (including all messages to root) to the

admin email address. The admin email is specified with the buildos.admin_email
kernel command line parameter.

In order to deliver mail, the postfix MTA is configured to forward to a relay. The relay

host is specified with the buildos.smtp_relay kernel command line parameter.

Note that no authentication of any kind is configured for relaying. This means that the relay

host should accept emails from build hosts either because of their network location (for

example, because they are on your organization’s local network and you are using your orga

nization’s relay) or because the relay host accepts emails send to the admin address from

anyone (which is normally the case if the relay is the final destination for the admin address,

for example, example.org and admin@example.org).

4.5 SSH

Build OS runs an OpenSSH server with password authentication and root login disabled. As

a result, the only way to login remotely is as user build using public key authentication. To

add a public key into the build’s authorized_keys file we can use the

buildos.ssh_key kernel command line parameter. For example (note the quotes):

buildos.ssh_key="ssh-rsa AAA...OA0DB user@host"

Revision 0.18, June 20246 The build2 Operating System

4.3 Network

4.6 Toolchains

The first step performed by the Build OS monitor is to bootstrap the build2 toolchain. The

location of the toolchain packages is specified with the buildos.toolchain_url kernel

command line parameter. This URL should point to the toolchain checksums file. You will

also normally need to pass the buildos.toolchain_trust parameter which is the

toolchain repository certificate fingerprint that the monitor should trust. Note also that the

bootstrap process (both on the build host and inside build machines) uses the default toolchain

repository location embedded into the build scripts in the build2-toolchain package.

It is also possible to use multiple toolchains on a single Build OS instance. In this case a

toolchain name can be appended after buildos.toolchain_*, for example,

buildos.toolchain_url.<name> (values without the toolchain name use the

toolchain name default). The toolchain name may not contain -.

Each toolchain may also execute multiple bbot agent instances. The number of instances is

specified with the buildos.instances[.<name>] parameter.

All bbot agent instances of a toolchain are executed with the same nice value which can be

specified with the buildos.nice[.<name>] parameter. It should be between -20

(highest priority) and 19 (lowest priority) with 0 being the default. See sched(7) for details.

The bridge interface to be used for machine networking can be specified with the

buildos.bridge[.<name>] parameter. Valid values are br0 (public bridge to the

physical interface) and br1 (private/NAT’ed bridge to br0). If unspecified, br1 is used by

default.

In the checksums file blank lines and lines that start with # are ignored. If the first line is the

special disabled value, then this toolchain is ignored. Otherwise, each line in the check

sums file is the output of the shaNNNsum(1) utility, that is, the SHANNN sum following

by space, an asterisk (*, which signals the binary mode), and the relative file path. The exten

sion of the checksums file should be .shaNNN and the first line should be for the

build2-toolchain tar archive itself (used to derive the toolchain version). For

example:

toolchain.sha256
ae89[...]87a4 *0.4.0/build2-toolchain-0.4.0.tar.xz
058d[...]c962 *0.4.0/build2-baseutils-0.4.0-x86_64-windows.zip
e723[...]c305 *0.4.0/build2-mingw-0.4.0-x86_64-windows.tar.xz

Based on the checksums file the monitor downloads each file into

/build/tftp/toolchains/<name>/ (the file path is taken as relative to

toolchain_url), verifies their checksums, and creates predictable name symlinks (names

without the version). It also creates the version which contains the toolchain version and

the trust file which contains the value of the buildos.toolchain_trust parameter

or the special "no" value if none were specified.

7Revision 0.18, June 2024 The build2 Operating System

4.6 Toolchains

Continuing with the above example, the contents of

/build/tftp/toolchains/default/ would be:

version
trust

build2-toolchain-0.4.0.tar.xz
build2-baseutils-0.4.0-x86_64-windows.zip
build2-mingw-0.4.0-x86_64-windows.tar.xz

build2-toolchain-tar.xz -> build2-toolchain-0.4.0.tar.xz
build2-baseutils-x86_64-windows.zip -> build2-baseutils-0.4.0-x86_64-windows.zip
build2-mingw-x86_64-windows.tar.xz -> build2-mingw-0.4.0-x86_64-windows.tar.xz

While the monitor itself only needs the build2-toolchain package, build machine

toolchain bootstrap may require additional packages (which will be accessed via TFTP using

predictable names).

4.7 Controllers

For each toolchain the bbot agent polls one or more controllers for build tasks to perform.

The controller URLs are configured with the the

buildos.controller_url[.<name>] kernel command line parameter (where

<name> is optional toolchain name). To specify multiple controllers, repeat this parameter.

Additionally, we can use the buildos.controller_trust[.<name>] kernel

command line parameter to specify SHA256 repository certificate fingerprints to trust (see the

trust build task manifest value for details). To specify multiple fingerprints, repeat this

parameter.

5 Build Machines

At the top level, a machine storage volume (see Machines) contains machine directories, for

example:

/build/machines/default/
|-- linux-gcc_6/
·-- windows-msvc_14/

The layout inside a machine directory is as follows, where <name> is the machine name and

<toolchain> is the toolchain name:

<name>/
|-- <name>-1 -> <name>-1.1
|-- <name>-1.0/
|-- <name>-1.1/
|-- <name>-<toolchain>/
·-- <name>-<toolchain>-<xxx>/

Revision 0.18, June 20248 The build2 Operating System

5 Build Machines

The <name>-<P>.<R> entries are read-only btrfs subvolumes that contain the initial

(that is, pre-bootstrap) machine images. The numeric <P> part indicates the bootstrap proto

col version. The numeric <R> part indicates the machine revision.

The <name>-<P> entry is a symbolic link to <name>-<P>.<N> that is currently in effect.

The <name>-<toolchain> entry is the bootstrapped machine image for <toolchain>.

It is created by cloning <name>-<P> with a bootstrap protocol version that matches this

toolchain’s bbot and then bootstrapping the build2 toolchain inside.

The <name>-<toolchain>-<xxx> entries are the temporary snapshots of

<name>-<toolchain> created by bbot for building packages.

A machine can be added, upgraded, or removed on a live Build OS instance. This needs to be

done in a particular order to avoid inconsistencies and race conditions.

5.1 Adding a Machine

Let’s assume you have a read-only btrfs linux-gcc_6-1.0 subvolume on a develop

ment host (we will call it devel) that contains the initial version of our virtual machine. We

would like to add it to the build host (running Build OS, we will call it build) into the

default machine volume (/build/machines/default/). To achieve this in an atomic

way we perform the following steps:

Create the machine directory.
#
build$ mkdir /build/machines/default/linux-gcc_6

Send the machine subvolume to build host.
#
devel$ sudo btrfs send linux-gcc_6-1.0 | \
 ssh build@build sudo btrfs receive /build/machines/default/linux-gcc_6/

build$ cd /build/machines/default/linux-gcc_6

Make user build the owner of the machine subvolume.
#
build$ sudo btrfs property set -ts linux-gcc_6-1.0 ro false
build$ sudo chown build:build linux-gcc_6-1.0 linux-gcc_6-1.0/*
build$ btrfs property set -ts linux-gcc_6-1.0 ro true

Make the subvolume the current machine.
#
build$ ln -s linux-gcc_6-1.0 linux-gcc_6-1

The upload-machine helper script implements this sequence of steps.

9Revision 0.18, June 2024 The build2 Operating System

5.1 Adding a Machine

5.2 Upgrading a Machine

Continuing with the example started in the previous section, let’s assume we have created

linux-gcc_6-1.1 as a snapshot of linux-gcc_6-1.0 and have made some modifica

tion to the virtual machine (all on the development host). We now would like to switch to this

new revision of our machine on the build host. To achieve this in an atomic way we perform

the following steps:

Send the new machine subvolume to build host incrementally.
#
devel$ sudo btrfs send -p linux-gcc_6-1.0 linux-gcc_6-1.1 | \
 ssh build@build sudo btrfs receive /build/machines/default/linux-gcc_6/

build$ cd /build/machines/default/linux-gcc_6

Make user build the owner of the new machine subvolume.
#
build$ sudo btrfs property set -ts linux-gcc_6-1.1 ro false
build$ sudo chown build:build linux-gcc_6-1.1 linux-gcc_6-1.1/*
build$ btrfs property set -ts linux-gcc_6-1.1 ro true

Switch the current machine atomically.
#
build$ ln -s linux-gcc_6-1.1 new-linux-gcc_6-1
build$ mv -T new-linux-gcc_6-1 linux-gcc_6-1

Remove the old machine subvolume (optional).
#
build$ btrfs property set -ts linux-gcc_6-1.0 ro false
build$ btrfs subvolume delete linux-gcc_6-1.0

The upload-machine helper script implements this sequence of steps.

5.3 Remove a Machine

Continuing with the example started in the previous section, let’s assume we are no longer

interested in the linux-gcc_6 machine and would like to remove it. This operation is

complicated by the possibility of bbot instances currently building with this machine.

build$ cd /build/machines/default/linux-gcc_6

Remove the current machine symlink.
#
build$ rm linux-gcc_6-1

Wait for all the linux-gcc_6-<toolchain>-<xxx> subvolumes
to disappear.
#
build$ for d in linux-gcc_6-*-*/; do \
 while [-d $d]; do \
 echo "waiting for $d" && \
 sleep 10; \
 done; \
done

Remove the initial and bootstrapped machine subvolume(s).

Revision 0.18, June 202410 The build2 Operating System

5.2 Upgrading a Machine

#
build$ for d in linux-gcc_6-*/; do \
 btrfs property set -ts $d ro false && \
 btrfs subvolume delete $d; \
done

Remove the machine directory.
#
build$ cd ..
build$ rmdir /build/machines/default/linux-gcc_6

The remove-machine helper script implements this sequence of steps.

Note also that on reboot the Build OS monitor examines and cleans up machine directories of

any stray subvolumes. As a result, an alternative approach would be to remove the current

machine symlink and reboot the build host.

5.4 Logging into a Machine

A running QEMU/KVM machine (that is, one being bootstrapped or used for building) can be

accessed with a VNC client. Clients based on gtk-vnc, such as vinagre, are known to

work reasonably well. For example:

ssh -f -L 5901:127.0.0.1:5901 build@build sleep 1 && vinagre 127.0.0.1:5901

If the machine has been suspended, it can be resumed using the following command:

echo cont | ssh build@build socat - UNIX-CONNECT:/tmp/monitor-<toolchain>-<instance>

The login-machine helper script implements this sequence of steps.

Other useful QEMU monitor commands are system_powerdown and system_reset.

11Revision 0.18, June 2024 The build2 Operating System

5.4 Logging into a Machine

	Preface
	1 Introduction
	2 Architecture
	3 Booting
	3.1 Reboot
	3.2 Network Boot
	3.3 Local Boot

	4 Configuration
	4.1 CPU and RAM
	4.2 Storage
	4.2.1 State
	4.2.2 Machines

	4.3 Network
	4.4 Email
	4.5 SSH
	4.6 Toolchains
	4.7 Controllers

	5 Build Machines
	5.1 Adding a Machine
	5.2 Upgrading a Machine
	5.3 Remove a Machine
	5.4 Logging into a Machine

